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RFID MOTION DETECTION FOR DENSE 
RFID TAG ENVIRONMENTS 

[ 0014 ] FIGS . 10 , 11 , 12 , 13 , and 14 illustrate examples of 
computing networks and architectures that can be used in 
accordance with embodiments described herein . 

CROSS - REFERENCE TO RELATED 
APPLICATIONS EMBODIMENTS OF THE DISCLOSURE 

[ 0001 ] This Application is a continuation ( and claims the 
benefit of priority under 35 U.S.C. $ 120 ) of U.S. application 
Ser . No. 16 / 697,098 , filed Nov. 26 , 2019 and entitled 
BEHAVIOR DETECTION USING RFID IN ENVIRON 
MENTS WITH HIGH RFID TAG DENSITY . The disclo 
sure of the prior Application is considered part of and is 
incorporated by reference in the disclosure of this Applica 
tion . 

FIELD OF THE SPECIFICATION 

[ 0002 ] This disclosure relates in general to the field of 
behavior detection systems , and more particularly , though 
not exclusively , to behavior detection using RFID in envi 
ronments with a high density of RFID tags . 

BACKGROUND 

[ 0003 ] In the retail industry , RFID technology has been 
primarily used for basic inventory tracking . Existing solu 
tions , however , are unable to accurately detect motion , 
behavior , and interactions associated with the retail products 
that have RFID tags attached to them , particularly in envi 
ronments with a high density of RFID tags , as it is often 
difficult to achieve a high tag read rate in those environ 
ments . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0015 ] The following disclosure provides many different 
embodiments , or examples , for implementing different fea 
tures of the present disclosure . Specific examples of com 
ponents and arrangements are described below to simplify 
the present disclosure . These are , of course , merely 
examples and are not intended to be limiting . Further , the 
present disclosure may repeat reference numerals and / or 
letters in the various examples . This repetition is for the 
purpose of simplicity and clarity and does not in itself dictate 
a relationship between the various embodiments and / or 
configurations discussed . Different embodiments may have 
different advantages , and no particular advantage is neces 
sarily required of any embodiment . 
[ 0016 ] RFID Motion and Behavior Detection 
[ 0017 ] Unlike online retailers , a major problem facing 
brick and mortar retailers is the inability to capture mean 
ingful data - unobtrusively - on how shoppers behave and 
roam around in a store before making a purchase . For 
example , retailers want to understand what items a shopper 
browses while in a store , how much time the shopper spends 
browsing each item , how the shopper physically manipu 
lates each item , what items are browsed concurrently and / or 
successively , and any other shopper behavioral patterns in 
the store that eventually lead to a successful sale . Retailers 
can then leverage this intelligence regarding shopper behav 
ior to increase sales , such as by optimizing the layout or 
arrangement of items in the store , providing a comfortable 
shopping experience , offering discounts on certain items ( or 
combinations of items ) , and so forth . 
[ 0018 ] Although many retail stores are equipped with 
cameras that could potentially be used to detect some degree 
of shopper behavior , vision - based artificial intelligence ( AI ) 
is unable to provide the requisite level of detail on shopper 
behavior that retailers need . As an example , many items in 
a store often appear visually similar to a camera ( e.g. , 
clothing items of a similar type , design , or color , particularly 
when folded ) , which makes it difficult for a camera to 
differentiate between those items . Vision - based approaches 
also suffer from occlusions when the line - of - sight of a 
camera is blocked or obstructed , such as when a shopper's 
back is towards the camera while browsing ( thus obstructing 
items that are browsed from the camera view ) , or when the 
shopper becomes obstructed from the camera view by other 
people or objects in the store , among other examples . These 
problems are escalated further during peak business hours 
when many customers are walking around a store and 
simultaneously browsing many items . Moreover , beyond 
these physical constraints , developing and training vision 
based AI algorithms capable of accurately capturing shopper 
behavior at the requisite granularity would require an 
extraordinary volume of video data to be collected and 
labeled using manual human labor , which is a prohibitively 
expensive undertaking for retailers . 
[ 0019 ] Many retail stores are also equipped with RFID 
technology ( e.g. , RFID readers and RFID tags attached to 
retail items ) , which is primarily used for inventory tracking 
purposes . While current RFID - based solutions are also 
capable of inferring some degree of human - object interac 
tions from the low - level backscattered signals from RFID 

[ 0004 ] The present disclosure is best understood from the 
following detailed description when read with the accom 
panying figures . It is emphasized that , in accordance with 
the standard practice in the industry , various features are not 
necessarily drawn to scale , and are used for illustration 
purposes only . Where a scale is shown , explicitly or implic 
itly , it provides only one illustrative example . In other 
embodiments , the dimensions of the various features may be 
arbitrarily increased or reduced for clarity of discussion . 
[ 0005 ] FIG . 1 illustrates an example embodiment of an 
RFID behavior detection system . 
[ 0006 ] FIGS . 2A - C illustrate examples of the read rate of 
RFID tags in various environments . 
[ 0007 ] FIG . 3 illustrates an example processing pipeline 
for an RFID behavior detection system . 
[ 0008 ] FIGS . 4A - B illustrate examples of signal strength 
( RSSI ) seasonal decomposition for RFID tags in different 
motion states . 
[ 0009 ] FIGS . 5A - B illustrate examples of frequency 
phase curves for RFID tags in different motion states . 
[ 0010 ] FIGS . 6A - B illustrate example histograms showing 
the distribution of signal strength and signal phase features 
for RFID tags in different motion states . 
[ 0011 ] FIG . 7 illustrates a performance evaluation of a 
behavior detection system using various machine learning 
classifiers and RFID tag densities . 
[ 0012 ] FIG . 8 illustrates a confusion matrix depicting the 
motion detection performance of a voting classifier . 
[ 0013 ] FIG . 9 illustrates a flowchart for an example 
embodiment of RFID behavior detection . 
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tags , those solutions require the tag read rate to be high 
enough to reconstruct phase and identify trend in its spatial 
temporal correlation . The high read rate requirement , how 
ever , limits those solutions to a tag density of less than 100 
tags within the range of an RFID reader , which is highly 
unrealistic in a retail environment . 
[ 0020 ] Thus , existing solutions that leverage computer 
vision and / or RFID technology in retail environments suffer 
from numerous shortcomings . 
[ 0021 ] For example , while camera - based solutions are 
easy to interpret from a human perspective and can be used 
to detect object interactions , a camera requires proper light 
ing and line - of - sight ( LOS ) to the subjects that are being 
monitored ; if an interaction is blocked by the human body or 
the surrounding infrastructure , the system loses track of the 
subjects . In addition , there are often “ blind spots ” in areas of 
a retail environment that are not visible to any cameras , 
which results in dead zones that cannot be monitored by the 
system . Further , camera - based solutions have difficulty in 
distinguishing between similar looking objects ( e.g. , differ 
ent styles of jeans ) , which limits their ability to derive 
meaningful insights about different products . Computer 
vision solutions are also ineffective at recognizing certain 
types of customer behavior , such as customers consuming 
goods and placing empty cases back on shelves , customers 
grabbing multiple items quickly or simultaneously , custom 
ers shopping as a group and placing items in each other's 
carts , customers committing theft , and so forth . 
[ 0022 ] In order to compensate for these weaknesses , com 
puter vision solutions are often supplemented with other 
technologies , such as motion detectors and other sensors 
( e.g. , to detect when customers pick up and put back items 
on shelves ) , which further increases the cost of these solu 
tions . 
[ 0023 ] Computer vision solutions also rely heavily on 
deep learning , which requires large volumes of training data 
to be manually labeled by humans . This costly and time 
consuming approach forces retailers to settle for more 
affordable solutions with less sophisticated functionality , 
such as calculating footfall ( e.g. , the number of people that 
enter a store ) , identifying customers ' faces , generating heat 
maps of the store layout to identify areas of high shopper 
activity , and so forth . Detecting and tracking customer 
product interactions using computer vision , however , 
requires a much finer level of granularity and is a highly 
expensive approach . 
[ 0024 ] Current RFID - based solutions also suffer from 
various shortcomings . For example , while the retail industry 
has embraced the use of RFID for inventory tracking pur 
poses , commercial applications of RFID for detecting cus 
tomer - product interactions are virtually non - existent . Thus , 
the impact of commercial RFID - based solutions on cus 
tomer satisfaction is limited to ensuring that products of 
interest are generally available to shoppers , which leaves the 
lucrative opportunity of providing a personalized shopping 
experience unaddressed . 
[ 0025 ] Moreover , solutions in academia that use RFID for 
detecting object interactions are unsuitable in environments 
with a high density of RFID tags . In particular , these 
solutions require a high read rate of individual RFID tags to 
identify phase data within a short timeframe ( e.g. , tens of 
milliseconds ) in order to perform model training and infer 
ence . These solutions have only been tested in lab environ 
ments with a limited number of RFID tags ( e.g. , 30-50 tags 

or fewer ) , where a high per - tag read rate is easily attainable , 
as the read rate is calculated by dividing the aggregated tag 
read rate of the RFID reader ( e.g. , 1000 tag reads per second ) 
by the total number of visible tags in the environment . In real 
deployment environments ( e.g. , retail stores ) , however , a 
single RFID reader is often required to monitor 1000 or 
more RFID tags in its radio frequency ( RF ) space , and thus 
the tag read rate can be extremely low , particularly due to 
collisions . For example , as shown in FIGS . 2A - C , the 
average read rate varies across environments with different 
tag densities , and the read rate in environments with higher 
tag density can even drop to zero at times , which causes 
frequent data gaps that can last over 10 seconds . Detecting 
RFID tag motion accurately in environments with high tag 
density ( e.g. , 100 tags , 500 tags , 1000 tags , or more ) is an 
open problem that has not yet been solved . 
[ 0026 ] Accordingly , this disclosure presents various 
embodiments of an RFID behavior detection system that can 
accurately detect motion of RFID tags even in environments 
with a high tag density , as described further below . 
[ 0027 ] FIG . 1 illustrates an example embodiment of a 
radio frequency identification ( RFID ) behavior detection 
system 100. In the illustrated embodiment , RFID behavior 
detection system 100 includes a collection of physical assets 
102a - n with corresponding RFID tags 103a - n , RFID readers 
104a - b , a behavior detection device 106 , and a cloud back 
end 110. Behavior detection system 100 detects behavior 
associated with the physical assets 102a - n based on motion 
associated with their corresponding RFID tags 103a - n . In 
some embodiments , for example , signal strength and signal 
phase features are extracted from radio signals that the RFID 
readers 104a - b receive from the RFID tags 103a - n , and 
those features are then analyzed using artificial intelligence 
and / or machine learning ( e.g. , by the behavior detection 
device 106 ) to detect motion associated with the RFID tags 
103a - n , as described further below . Moreover , the detected 
motion of the RFID tags 103a - n can be further analyzed 
( e.g. , by the behavior detection device 106 and / or the cloud 
110 ) in order to derive or infer behavior associated with the 
corresponding physical assets 102a - n . 
[ 0028 ] In some embodiments , for example , each RFID 
reader 104a , b periodically transmits an interrogation signal 
to the respective RFID tags 103a - n within its proximity , and 
upon receiving the interrogation signal , those RFID tags 
103a - n transmit a responsive signal back to the RFID reader 
104a , b , which typically includes a tag identifier ( ID ) and / or 
other data associated with the particular RFID tag . The 
RFID readers 104a , b measure the signal strength and phase 
of each responsive signal received from the RFID tags 
103a - n , and those measurements are then provided to the 
behavior detection device 106 , which uses them to detect 
motion associated with the RFID tags 103a - n . 
[ 0029 ] In some embodiments , for example , motion asso 
ciated with the RFID tags 103a - n is continuously detected 
over a moving time window ( e.g. , a three - second window ) 
based on the signals received from each RFID tag during the 
current time window . For example , a collection of raw signal 
strength and phase measurements for the signals received 
from a particular RFID tag 103a - n during the current time 
window may be buffered or stored . The collection of raw 
signal measurements for that RFID tag may then be pre 
processed , filtered , and / or sanitized . For example , because 
the sampling rate for each RFID tag 103a - n may vary across 
different time windows , the collection of raw signal mea 

a 
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surements for a particular RFID tag during a given time 
window may be upsampled or downsampled to normalize 
the sampling rate of those measurements ( e.g. , via interpo 
lation ) . Seasonal decomposition may then be performed on 
the resulting signal strength measurements to decompose 
them into a seasonal data series , a trend data series , and a 
residual data series . Moreover , spectral linearity tracking 
may be performed on the resulting signal phase measure 
ments to generate a frequency - phase curve , which represents 
the signal phases detected across the various transmission 
frequencies used by the RFID tag . 
[ 0030 ] Various feature sets may then be extracted based on 
the seasonal decomposition of signal strength measurements 
and the spectral linearity tracking of signal phase measure 
ments . In particular , a signal strength feature set may be 
extracted based on the signal strength seasonal decomposi 
tion , and a signal phase feature set may be extracted based 
on the frequency - phase curve . 
[ 0031 ] For example , the signal strength feature set may 
include ( 1 ) the trend extracted from the signal strength 
seasonal decomposition at specific frequencies , ( 2 ) the 
residual extracted from the signal strength seasonal decom 
position at specific frequencies , and / or ( 3 ) the standard 
deviation of the signal strength measurements collected 
during the current time window . 
[ 0032 ] Moreover , the signal phase feature set may include 
( 1 ) the slope of the linear regression of the frequency - phase 
curve , ( 2 ) the correlation coefficient ( or “ R value ” ) of the 
least - squares regression of the frequency - phase curve , ( 3 ) 
descending trends calculated based on phase variation , ( 4 ) 
the dynamic range of the signal phase values , and / or ( 5 ) the 
number of zero crossings in the frequency - phase curve . 
[ 0033 ] A machine learning ( ML ) classifier is then used to 
detect , predict , or infer the motion state of the RFID tag 
103a - n based on the signal strength and signal phase feature 
sets ( e.g. , using one or more trained machine learning 
models ) . In some embodiments , for example , the motion 
state detected by the ML classifier may indicate a time of 
occurrence , an RFID tag identifier ( ID ) , whether the tag is 
stationary or moving , and / or an energy intensity of any tag 
movement . 
[ 0034 ] The detected motion states of the various RFID 
tags 103a - n can then be further analyzed ( e.g. , by the 
behavior detection device 106 and / or the cloud 110 ) in order 
to derive or infer behavior associated with the corresponding 
physical assets 102a - n . For example , in the retail context 
( e.g. , where the physical assets 102a - n are retail products ) , 
the motion states of the RFID tags 103a - n may be used to 
identify customer - product behavior and interactions and 
perform analytics based on the identified behavior and 
interactions . 
[ 0035 ] This solution provides numerous advantages over 
existing solutions . For example , this solution provides 
highly accurate motion detection for RFID tags in environ 
ments with high tag density and low read rate ( e.g. , envi 
ronments where 500 or more RFID tags co - exist in both 
stationary and moving states ) , along with accurate calcula 
tion of the energy intensity of the tag motion . Moreover , this 
solution does not require any a priori information on the 
location or identity of the RFID tags , nor any a priori 
information on which tags are likely to be in motion or are 
currently in motion . Further , unlike existing solutions , this 
solution does not require the signal phase to be recon 

structed , which means its performance does not depend on 
achieving the high tag sampling rate that is required for 
phase reconstruction . 
[ 0036 ] This solution also enables existing RFID readers to 
be extended with RFID tag motion and behavior detection 
capabilities without any additional hardware costs . For 
example , an RFID reader used for traditional inventory 
tracking can be extended with the described motion detec 
tion functionality to provide a more effective “ responsive 
retail ” solution . 
[ 0037 ] Moreover , this solution enables sophisticated ana 
lytics to be derived regarding shopper behavior , including , 
but not limited to : 

[ 0038 ] ( 1 ) identification of a shopper picking up single 
or multiple items on display ; 

[ 0039 ] ( 2 ) manual manipulation patterns of items in the 
store ( e.g. , patterns of tossing and turning items , and 
speed thereof , can indicate levels of interest in the items 
and even the likelihood of a potential sale ) ; 

[ 0040 ] ( 3 ) identification of associated or related items 
( e.g. , a particular blouse simultaneously browsed with 
a particular skirt ) ; 

[ 0041 ] ( 4 ) amount of time spent browsing particular 
items ( e.g. , which can indicate the level of customer 
interest on those items and may be used to control the 
stock availability of certain items ) ; and 

[ 0042 ] ( 5 ) optimization of the store layout based on 
customer browsing patterns and the identified popular 
items ( e.g. , frequently associated clothing items can be 
placed near each other in the store to attract customer 
attention and increase the likelihood of a sale ) . 

[ 0043 ] Further , this solution leverages RFID technology to 
provide a sensing and customer analytics solution that does 
not suffer from the " Non - Line - of - Sight " ( NLOS ) , poor 
lighting , and calibration problems that all cameras installed 
in retail stores suffer from . 
[ 0044 ] This solution also enables the possibility of incor 
porating multimodal use of RFID and computer vision 
solutions for behavior detection ( e.g. , using the available 
RFID readers and cameras installed throughout a store , or 
using RFID readers with integrated cameras ) . 
[ 0045 ] This solution also easily scales across the different 
radio frequency ( RF ) environments that are typically found 
in different retail spaces ( e.g. , due to different layouts , 
furniture , and building structures ) . For example , FIGS . 
2A - C illustrate the read rates of RFID tags across various 
environments . In particular , FIG . 2A corresponds to 53 tags 
in a clean RF environment , FIG . 2B corresponds to 151 tags 
in a harsh RF environment with heavy multipath , and FIG . 
2C corresponds to 1000 tags in a clean environment with 
619 tags visible to the RFID reader . As shown in these 
figures , the average read rate varies over time for different 
tag densities , but the read rate or sample rate of individual 
tags can still be significantly different in different environ 
ments regardless of the tag density , although the discrepancy 
is generally less severe in low tag density environments . 
This described solution , however , is designed to accurately 
detect motion and behavior of RFID tags even when sub 
jected to the unreliable sampling issues that are commonly 
encountered across different environments with different tag 
densities , which often cause existing solutions to fail . 
[ 0046 ] This solution can be used to detect motion and / or 
behavior in any desired context or use case , including , but 
not limited to , retail ( e.g. , inventory tracking , customer 
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product behavior detection ) , manufacturing ( e.g. , progress 
tracking of product manufacture ) , shipping and transporta 
tion ( e.g. , parcel tracking ) , asset tracking ( e.g. , personal 
property , humans , animals ) , and so forth . 
[ 0047 ] Moreover , the motion and behavior detection func 
tionality can be implemented using any type of processing 
device and / or combination of processing devices , such as 
processors integrated within RFID readers 104a - b , edge or 
on - premise processors and servers ( e.g. , behavior detection 
device 106 ) , cloud servers 110 , and so forth . 
[ 0048 ] Further , RFID readers 104a - b may be implemented 
using any suitable combination of computing components 
for sending / receiving RF signals to / from RFID tags , and for 
the processing of those signals , such as an antenna , an 
integrated circuit or processor , memory , a power source , and 
so forth . Similarly , RFID tags 103a - n may be implemented 
using any suitable combination of computing components 
for sending / receiving RF signals to / from RFID readers , and 
for the processing of those signals , such as an antenna , an 
integrated circuit or processor , a memory to store data ( e.g. , 
a tag ID ) , a power source ( e.g. , a passive tag may include a 
means of collecting DC power from the signals sent by 
RFID readers , while an active tag may include a battery ) , 
and so forth . 
[ 0049 ] FIG . 3 illustrates an example processing pipeline 
300 for an RFID behavior detection system . In some 
embodiments , for example , processing pipeline 300 may be 
implemented by RFID behavior detection system 100 of 
FIG . 1 . 
[ 0050 ] In processing pipeline 300 , an RFID system per 
forms RFID tag inventory on a periodic and / or continuous 
basis at certain time intervals . During the RFID tag inven 
tory process , the RFID reader 304 sends out an interrogation 
signal or query to RFID tags 302 in the field that are within 
its radio frequency ( RF ) range , and the tags 302 that receive 
the query respond in a pseudorandom fashion to avoid or 
minimize collisions . This means that the RFID reader 304 
cannot control when the tags 302 respond ( e.g. , due to the 
pseudorandom responses ) , which results in a variable sam 
pling rate for each tag over a given time window . However , 
each time a tag 302 responds , the RFID reader 304 measures 
wireless parameters of the responsive signal , such as signal 
strength ( e.g. , a received signal strength indicator ( RSSI ) ) 
and phase . 
[ 0051 ] In processing pipeline 300 , the wireless signal 
measurements collected for each tag are processed sepa 
rately from , but in parallel with , those of other tags . In 
particular , as described further below , processing pipeline 
300 includes three stages : signal processing ( e.g. , filtering 
and sanitiza on ) 306 , feature extraction 308 , and machine 
learning ( ML ) inference 310 . 
[ 0052 ] In the signal processing stage 306 , the wireless 
signal measurements collected for a particular tag during a 
given time window are filtered or sanitized . For example , 
when raw signal data ( e.g. , RSSI and phase measurements ) 
for a particular tag is received from the RFID reader , the raw 
data is buffered over a particular time window , and the 
requisite signal processing is then applied to the collection 
of buffered data . In some embodiments , for example , the raw 
signal data is buffered over a moving time window of three 
seconds , and the resulting RSSI and phase datasets in the 
buffer are then processed separately . 
[ 0053 ] In some cases , for example , the phase dataset is 
first unwrapped ( e.g. , 2Pi complement ) . Moreover , due to 

the variable or uneven sampling rate of an RFID system , the 
respective RSSI and phase datasets are then upsampled or 
downsampled ( e.g. , using interpolation ) to a normalized or 
fixed sampling frequency ( e.g. , 16.67 Hz ) . The normalized 
RSSI and phase datasets are then separately processed in the 
manner described below . 
[ 0054 ] In particular , seasonal decomposition is performed 
on the RSSI dataset to decompose the underlying data into 
seasonal , residual , and / or trend datasets . For example , with 
respect to RSSI or signal strength measurements , the signal 
energy varies with the distance between the tag and the 
RFID reader antenna , primarily due to RF - propagation 
based fading . Moreover , when a tag is moved by a human , 
the RSSI signal tends to fluctuate significantly with the 
motion ( especially for large or extreme motion ) due to the 
shadowing effect from the human body in addition to the 
distance - based fading . To understand and interpret the 
meaning behind the level of fluctuation in the RSSI signal , 
seasonal decomposition is performed on the RSSI dataset . 
Conceptually , a seasonal decomposition algorithm decom 
poses the RSSI dataset into periodic ( seasonal ) and non 
periodic ( residual ) signal portions or datasets . The idea 
behind the decomposition process is as follows : ( i ) when a 
tag is in motion , the non - periodic signal should fluctuate 
more significantly , as those motions are usually bursty and 
irregular ; and ( ii ) when a tag remains stationary , the non 
periodic signal should be relatively flat . 
[ 0055 ] To illustrate , FIGS . 4A - B provide examples of the 
RSSI seasonal decompositions for RFID tags in different 
motion states . In particular , FIG . 4A illustrates the seasonal 
and residual datasets from the RSSI seasonal decomposition 
for a stationary tag , while FIG . 4B illustrates the seasonal 
and residual datasets from the RSSI seasonal decomposition 
for a moving tag . As shown by these examples , the motion 
tag ( FIG . 4B , residual ) has significantly more fluctuation in 
its non - periodic or residual signal compared to that of the 
stationary tag ( FIG . 4A , residual ) . 
[ 0056 ] Turning back to FIG . 3 , with respect to the phase 
dataset , spectral linearity tracking is performed to examine 
the linearity of the underlying phase data across different 
frequencies within the hopping spectrum of the RFID reader . 
In particular , phase information is retrieved using the fre 
quency - phase curve . For example , as RFID readers query 
the field , they hop frequencies periodically ( e.g. , every 
200-400 milliseconds ( ms ) ) to comply with applicable legal 
regulations , such as Federal Communications Commission 
( FCC ) regulations . As a result , the phase dataset for an RFID 
tag includes phase readings for different frequencies over the 
sampling time window . Thus , the phase dataset can be 
represented using a frequency - phase curve , which represents 
the phase reading at each frequency used for signal trans 
mission during the sampling time window . The information 
represented in the frequency - phase curve typically provides 
insight into the current motion state of the RFID tag . 
[ 0057 ] To illustrate , FIGS . 5A - B provide examples of the 
frequency - phase curves for RFID tags in different motion 
states , which are generated from the respective phase data 
sets collected for those tags over a 3 - second sampling time 
window . In particular , FIG . 5A illustrates the frequency 
phase curve for a stationary tag , while FIG . 5B illustrates the 
frequency - phase curve for a moving tag . The underlying 
phase data in the frequency - phase curve is extracted from 
the backscattered signal of the responding RFID tag and is 
sensitive to small distance changes between the tag and the 
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antenna of the RFID reader . In the case of a stationary tag 
( e.g. , the tag is not being moved by a human ) , there is no 
change in distance to the RFID reader antenna , which means 
phase should be a linear function of the carrier frequency , 
and thus the frequency - phase curve should be close to a 
straight line with a slope of -1 ( as shown in FIG . 5A ) . In the 
case of a motion tag ( e.g. , the tag is being moved by a 
human ) , the linearity is destroyed and thus the frequency 
phase curve tends to fluctuate ( as shown in FIG . 5B ) . 
[ 0058 ] Turning back to FIG . 3 , once the signal processing 
stage 306 is complete , processing pipeline 300 enters the 
feature extraction stage 308. In the feature extraction stage 
308 , various signal strength and phase features are extracted 
from the RSSI seasonal decomposition and the frequency 
phase curve that were generated during the signal processing 
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stage 306 . 
[ 0059 ] For example , a signal strength feature set is 
extracted based on the RSSI seasonal decomposition . The 
signal strength feature set may include the following fea 
tures : 

[ 0060 ] ( 1 ) Trend : The trend refers to the underlying 
trend of the time series ( e.g. , based on the DC bias in 
a voltage signal ) . A trend data series is extracted from 
the RSSI seasonal decomposition at specific frequen 
cies ( e.g. , 3 , 6 , and 9 Hz ) . 

[ 0061 ] ( 2 ) Residual : The residual refers to the residuals 
of the original time series after the seasonal and trend 
data series are removed . A residual data series is 
extracted from the RSSI seasonal decomposition at 
specific frequencies ( e.g. , 3 , 6 , and 9 Hz ) . 

[ 0062 ] ( 3 ) Standard Deviation : The standard deviation 
of the RSSI dataset is calculated over a moving average 
window of the original time series ( e.g. , the standard 
deviation of the RSSI or signal strength measurements 
collected during the current time window ) . 

[ 0063 ] The specific frequencies at which the trend and 
residual are extracted may vary depending on the frequen 
cies that are typically associated with the various tag 
motions of interest in a particular use case . As an example , 
when a human moves a tagged t - shirt , the frequencies of 
motion patterns are usually below 5 Hz . Thus , there are 
specific frequencies at which different browsing motions 
manifest themselves . In the above example , the trend and 
residual are extracted at 3 , 6 , and 9 Hz . 
[ 0064 ] Moreover , a signal phase feature set is extracted 
based on the frequency - phase curve . The signal phase fea 
ture set may include the following features : 

[ 0065 ] ( 1 ) Slope : The slope of the linear regression of 
the frequency - phase curve over a fixed time window 
( e.g. , a three - second window ) . 

[ 0066 ] ( 2 ) R Value : The “ r value ” or correlation coef 
ficient of the least - squares regression of the frequency 
phase curve over a fixed time window . 

[ 0067 ] ( 3 ) Descending Trends : The descending trends 
capture whether the phase variation is trending up or 
down . In some cases , for example , the descending 
trends are calculated as the sum of the phase variation 
over a fixed time window . For example , by summing 
the deltas between two consecutive phase samples 
within a window , a positive sum implies an overall 
“ up ” trend within that window , while a negative sum 
implies an overall “ down ” trend within that window . 

[ 0068 ] ( 4 ) Dynamic Range : The dynamic range of the 
signal phase values over a fixed time window . 

[ 0069 ] ( 5 ) Zero Crossings : The number of zero cross 
ings of the frequency - phase curve over a fixed time 
window . 

[ 0070 ] These signal strength and signal phase feature sets 
typically provide insight into the current motion state of an 
RFID tag . To illustrate , FIGS . 6A - B provide examples of 
histograms that show the distribution of signal strength 
features and signal phase features for RFID tags in different 
motion states . 
[ 0071 ] For example , the histograms in FIG . 6A show the 
distribution of signal strength features for a stationary tag 
and a motion tag . In particular , these histograms represent 
the trend and residual extracted at 3 , 6 , and 9 Hz from the 
seasonal decomposition of the RSSI sequence within the 
current time window , and the standard deviation of the RSSI 
window , for both the stationary tag and motion tag . 
[ 0072 ] Similarly , the histograms in FIG . 6B show the 
distribution of signal phase features for the stationary tag 
and the motion tag . In particular , these histograms represent 
the slope , r value , descending trends , dynamic range , and 
number of zero crossings extracted from the frequency 
phase curve for both the stationary tag and motion tag . 
[ 0073 ] This combination of signal strength and phase 
metrics best characterizes the phase patterns of tags for the 
purpose of motion detection , with high tolerance for unre 
liable sampling issues over time , particularly in high tag 
density environments . 
[ 0074 ] Turning back to FIG . 3 , once the feature extraction 
stage 308 is complete , processing pipeline 300 enters the 
inference stage 310. In the inference stage 310 , a machine 
learning ( ML ) classifier is used to detect , predict , or infer the 
motion state of the RFID tag based on the features extracted 
during the feature extraction stage 308 . 
[ 0075 ] For example , the ML classifier may include one or 
more pre - trained ML models that have been trained to infer 
the motion state of RFID tags based on the signal strength 
and phase features described above . In some embodiments , 
for example , the ML classifier may be implemented as a 
voting classifier that detects the motion state of the RFID tag 
based on motion state predictions from multiple machine 
learning models , such as a random forest model and a 
logistic regression model , among other examples . Alterna 
tively , the machine learning classifier may be implemented 
as a single model classifier that detects or predicts the 
motion state of the RFID tag using a single machine learning 
model , such as a support - vector machine ( SVM ) model 
( e.g. , linear kernel ) , a random forest model , or a logistic 
regression model , among other examples . 
[ 0076 ] In this manner , the features extracted during the 
feature extraction stage 308 are supplied as input to the ML 
classifier , which uses the pre - trained ML model ( s ) to detect , 
predict , or infer the motion state of the RFID tag based on 
the extracted features . In some embodiments , the detected 
motion state may indicate a time of occurrence , an RFID tag 
identifier ( tag ID ) , whether the tag is stationary or moving , 
an energy intensity of any tag movement , and / or any other 
type of information that relates to the motion state or 
behavior of the tag . 
[ 0077 ] The detected motion state of the RFID tag can then 
be fed into a behavior detection analytics application 312 , 
which analyzes the motion states of all RFID tags to derive 
or infer behavior associated with the physical assets corre 
sponding to those tags . For example , in the retail context 
( e.g. , where the physical assets are retail products ) , analytics 
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may be performed on the motion states of RFID tags to 
identify customer behavior ( e.g. , customer - product interac 
tions ) and derive insights associated with that behavior . 
[ 0078 ] FIG . 7 illustrates a performance evaluation of the 
behavior detection system using various machine learning 
( ML ) classifiers and RFID tag densities . In particular , FIG . 
7 compares the motion detection accuracy of different ML 
classifiers for varying RFID tag densities using leave - one 
testing - file out cross validation . The different tag densities 
range in volume from 250 tags , 500 tags , 750 tags , to 1000 
tags . The different ML classifiers include a ( i ) support - vector 
machine ( SVM ) model ( e.g. , linear kernel ) , ( ii ) a random 
forest model , ( iii ) a logistic regression model , and ( iv ) a 
voting classifier that includes both random forest and logis 
tic regression models . These classifiers have been trained to 
perform motion detection for RFID tags based on the signal 
strength and signal phase features sets described in connec 
tion with FIG . 3. As shown in FIG . 7 , all of the classifiers 
achieve very high motion detection accuracy ( -95 % ) , but the 
voting classifier provides the best overall performance 
across the various tag densities . A confusion matrix depict 
ing the motion detection accuracy of the voting classifier is 
shown in FIG . 8 . 
[ 0079 ] As shown by FIGS . 7 and 8 , this solution can detect 
whether tags are stationary or in motion with very high 
accuracy . Moreover , this solution is capable of monitoring 
1000+ tags simultaneously , which is critical since there is 
typically no a priori knowledge of which tag a customer may 
possibly interact with . 
[ 0080 ] In general , motion detection in environments with 
high tag densities can be challenging , as RFID readers can 
typically only achieve maximum read rates of 700-1000 
reads per second , which is divided randomly among 
( including certain tags possibly being read multiple times ) , 
thus achieving only a few readings per tag ( at best ) over a 
three second window . 
[ 0081 ] Existing solutions attempt to accurately reconstruct 
the phase of each tag and then use the reconstructed phase 
to determine the tag state . This approach requires a high 
sampling rate for each tag , which may be possible when the 
tag field only contains roughly 25-50 tags , but not when 
there are hundreds or even thousands of tags . 
[ 0082 ] On the other hand , the solution in this disclosure 
does not reconstruct the signal phase , but instead examines 
the linearity of the phase across frequencies ( which can be 
done with only a few samples per tag ) , as well as separate 
out short - term fluctuations and long - term periodic changes 
in the RSSI data where the fluctuations provide lot more 
information about tag motion . Moreover , once the motion 
state of a tag ( e.g. , stationary or moving ) has been deter 
mined over a three - second window , this inference can be 
combined with other inferences over longer timescales to 
achieve higher confidence in the motion inference . In this 
manner , this solution can detect consistent object interac 
tions over tens of seconds , as well as quick short - term 
movements , such as a person picking up and placing down 
an object , a person holding an object in their hands and 
examining it , a person turning an object over once in a while , 
and so forth . 
[ 0083 ] Moreover , this solution can be achieved without 
adding new hardware to existing RFID systems . For 
example , this solution can be implemented using existing 
RFID readers that have already been deployed along with 
the currently available commercial RFID tags — it does not 
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require a higher density of RFID readers beyond what is 
already available in most retail stores . However , the stream 
of sensor data does need to be processed in order to 
understand the object interactions — the requisite processing 
power can be added to the RFID readers or the backend 
computing resources ( e.g. , on - premise , edge , and / or cloud 
processing resources or servers ) . 
[ 0084 ] FIG . 9 illustrates a flowchart 900 for an example 
embodiment of RFID behavior detection . In various 
embodiments , flowchart 900 may be implemented using the 
embodiments and functionality described throughout this 
disclosure ( e.g. , RFID behavior detection system 100 of 
FIG . 1 and / or behavior detection processing pipeline 300 of 
FIG . 3 ) . 
[ 0085 ] The flowchart begins at block 902 , where an RFID 
reader sends one or more interrogation signals to RFID tags 
in its vicinity during the current time window ( e.g. , a moving 
three - second window ) . 
[ 0086 ] The flowchart then proceeds to block 904 , where 
the RFID reader receives responsive wireless signals from 
one or more RFID tags during the current time window ( e.g. , 
in response to the interrogation signals sent by the RFID 
reader at block 902 ) . 
[ 0087 ] The flowchart then proceeds to block 906 , where 
the RFID reader detects or measures wireless signal data 
associated with the responsive wireless signals received 
from the RFID tags . In some embodiments , for example , the 
wireless signal data may include signal strength data and / or 
signal phase data for the signals received from the RFID 
tags . For example , in some embodiments , the signal strength 
data may include received signal strength indicators ( RSSIS ) 
for the signals from the RFID tags . 
[ 0088 ] The wireless signal data ( e.g. , signal strength and 
signal phase data ) may then be sent to processing circuitry 
( e.g. , via a communication interface ) for further processing . 
In various embodiments , for example , the processing cir 
cuitry may be integrated within the RFID reader , and / or the 
processing circuitry may be implemented within another 
computing device , such as a processor , computer , and / or 
server at the edge and / or in the cloud ( e.g. , which may be 
connected to the RFID reader via a network ) . Thus , the 
processing circuitry may receive the wireless signal data 
( e.g. , signal strength and signal phase data ) from the RFID 
reader via a communication interface , such as a bus , inter 
connect , and / or network interface controller ( NIC ) . 
[ 0089 ] Moreover , in some embodiments , the processing 
circuitry may normalize the sampling rate of the wireless 
signal data for each RFID tag before any further processing 
is performed ( e.g. , by upsampling or downsampling the 
wireless signal data to a defined sampling rate using inter 
polation techniques ) . 
[ 0090 ] The flowchart then proceeds to block 908 , where 
seasonal decomposition is performed on the signal strength 
data for each RFID tag to generate corresponding decom 
posed signal strength data . In some embodiments , for 
example , the decomposed signal strength data for each 
RFID tag may include a seasonal data series , a trend data 
series , and / or a residual data series . 
[ 0091 ] The flowchart then proceeds to block 910 , where 
spectral linearity tracking is performed on the signal phase 
data for each RFID tag to generate a corresponding fre 
quency - phase curve . In some embodiments , for example , the 
frequency - phase curve for each RFID tag indicates the 
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[ 0098 ] Thus , if it is determined at block 918 that behavior 
detection analytics should be performed , the flowchart pro 
ceeds to block 920 to perform behavior detection analytics 
based on the detected RFID tag motion states ; otherwise , the 
flowchart proceeds back to block 902 to continue detecting 
RFID tag motion states for subsequent time windows . 
[ 0099 ] At this point , the flowchart may be complete . In 
some embodiments , however , the flowchart may restart 
and / or certain blocks may be repeated . For example , in some 
embodiments , the flowchart may restart at block 902 to 
continue detecting motion and / or behavior associated with 
the RFID tags . 
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signal phases that were detected across the various trans 
mission frequencies used for the wireless signals from that 
tag . 
[ 0092 ] The flowchart then proceeds to block 912 , where a 
set of signal strength features is extracted from the decom 
posed signal strength data for each RFID tag . In some 
embodiments , for example , the set of signal strength features 
for each RFID tag may include trend data extracted from the 
trend data series of the decomposed signal strength data , 
residual data extracted from the residual data series of the 
decomposed signal strength data , and / or a standard devia 
tion of the received signal strength indicators ( RSSIS ) 
extracted from the signal strength data . Moreover , in some 
embodiments , the trend data and the residual data may be 
extracted from the respective trend and residual data series 
at multiple different frequencies . 
[ 0093 ] The flowchart then proceeds to block 914 , where a 
set of signal phase features is extracted from the frequency 
phase curve for each RFID tag . In some embodiments , for 
example , the set of signal phase features for each RFID tag 
may include a slope of a linear regression of the frequency 
phase curve , a correlation coefficient of a least - squares 
regression of the frequency - phase curve , a descending trend 
corresponding to a phase variation of the signal phases , a 
dynamic range of the signal phases , and / or a number of zero 
crossings of the frequency - phase curve . 
[ 0094 ] The flowchart then proceeds to block 916 to detect 
the motion state of each RFID tag by supplying its extracted 
features as input to a machine learning ( ML ) classifier . The 
ML classifier , for example , may be trained to detect motion 
states of RFID tags based on signal strength and signal phase 
features . 
[ 0095 ] In some embodiments , for example , the machine 
learning classifier may be implemented as a voting classifier 
that detects the motion state of an RFID tag based on motion 
state predictions from multiple machine learning models , 
such as a random forest model and a logistic regression 
model , among other examples . Alternatively , the machine 
learning classifier may be implemented as a single model 
classifier that detects or predicts the motion state of the 
RFID tag using a single machine learning model , such as a 
support - vector machine ( SVM ) model , a random forest 
model , or a logistic regression model , among other 
examples . 
[ 0096 ] In some embodiments , the detected motion state of 
an RFID tag may include a time of occurrence of the motion 
state , an identifier of the RFID tag , an indication of whether 
the RFID tag is stationary or moving , and / or a movement 
energy intensity of the RFID tag , among other examples . 
[ 0097 ] The flowchart then proceeds to block 918 to deter 
mine whether to perform behavior detection analytics . In 
some embodiments , for example , analytics are periodically 
performed based on the motion states detected over time for 
the RFID tags in order to detect various types of behavior 
associated with the tags . In some embodiments , for example , 
the RFID tags may be associated with or attached to physical 
assets , and the motion states of the RFID tags may be used 
to detect behavior associated with those physical assets and 
derive analytics based on that behavior . In a retail environ 
ment , for example , the RFID tags may be attached to retail 
products , and the motion states of the RFID tags may be 
used to detect human interactions with the retail products , 
and derive analytics based on those interactions . 

Example Computing Networks and Architectures 
[ 0100 ] FIGS . 10-13 illustrate examples of Internet - of 
Things ( IoT ) networks and devices that can be used in 
accordance with embodiments disclosed herein . For 
example , the operations and functionality described 
throughout this disclosure may be embodied by an IoT 
device or machine in the example form of an electronic 
processing system , within which a set or sequence of 
instructions may be executed to cause the electronic pro 
cessing system to perform any one of the methodologies 
discussed herein , according to an example embodiment . The 
machine may be an IoT device or an IoT gateway , including 
a machine embodied by aspects of a personal computer 
( PC ) , a tablet PC , a personal digital assistant ( PDA ) , a 
mobile telephone or smartphone , or any machine capable of 
executing instructions ( sequential or otherwise ) that specify 
actions to be taken by that machine . Further , while only a 
single machine may be depicted and referenced in the 
example above , such machine shall also be taken to include 
any collection of machines that individually or jointly 
execute a set ( or multiple sets ) of instructions to perform any 
one or more of the methodologies discussed herein . Further , 
these and like examples to a processor - based system shall be 
taken to include any set of one or more machines that are 
controlled by or operated by a processor ( e.g. , a computer ) 
to individually or jointly execute instructions to perform any 
one or more of the methodologies discussed herein . 
[ 0101 ] FIG . 10 illustrates an example domain topology for 
respective internet - of - things ( IoT ) networks coupled 
through links to respective gateways . The internet of things 
( IoT ) is a concept in which a large number of computing 
devices are interconnected to each other and to the Internet 
to provide functionality and data acquisition at very low 
levels . Thus , as used herein , an IoT device may include a 
semiautonomous device performing a function , such as 
sensing or control , among others , in communication with 
other IoT devices and a wider network , such as the Internet . 
[ 0102 ] Often , IoT devices are limited in memory , size , or 
functionality , allowing larger numbers to be deployed for a 
similar cost to smaller numbers of larger devices . However , 
an IoT device may be a smart phone , laptop , tablet , or PC , 
or other larger device . Further , an IoT device may be a 
virtual device , such as an application on a smart phone or 
other computing device . IoT devices may include IoT gate 
ways , used to couple IoT devices to other IoT devices and 
to cloud applications , for data storage , process control , and 
the like . 
[ 0103 ] Networks of IoT devices may include commercial 
and home automation devices , such as water distribution 
systems , electric power distribution systems , pipeline con 
trol systems , plant control systems , light switches , thermo 
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stats , locks , cameras , alarms , motion sensors , and the like . 
The IoT devices may be accessible through remote comput 
ers , servers , and other systems , for example , to control 
systems or access data . 
[ 0104 ] The future growth of the Internet and like networks 
may involve very large numbers of IoT devices . Accord 
ingly , in the context of the techniques discussed herein , a 
number of innovations for such future networking will 
address the need for all these layers to grow unhindered , to 
discover and make accessible connected resources , and to 
support the ability to hide and compartmentalize connected 
resources . Any number of network protocols and commu 
nications standards may be used , wherein each protocol and 
standard is designed to address specific objectives . Further , 
the protocols are part of the fabric supporting human acces 
sible services that operate regardless of location , time or 
space . The innovations include service delivery and associ 
ated infrastructure , such as hardware and software ; security 
enhancements ; and the provision of services based on Qual 
ity of Service ( QoS ) terms specified in service level and 
service delivery agreements . As will be understood , the use 
of IoT devices and networks , such as those introduced in 
FIGS . 10-13 , present a number of new challenges in a 
heterogeneous network of connectivity comprising a com 
bination of wired and wireless technologies . 
[ 0105 ] FIG . 10 specifically provides a simplified drawing 
of a domain topology that may be used for a number of 
internet - of - things ( IoT ) networks comprising IoT devices 
1004 , with the IoT networks 1056 , 1058 , 1060 , 1062 , 
coupled through backbone links 1002 to respective gateways 
1054. For example , a number of IoT devices 1004 may 
communicate with a gateway 1054 , and with each other 
through the gateway 1054. To simplify the drawing , not 
every IoT device 1004 , or communications link ( e.g. , link 
1016 , 1022 , 1028 , or 1032 ) is labeled . The backbone links 
1002 may include any number of wired or wireless tech 
nologies , including optical networks , and may be part of a 
local area network ( LAN ) , a wide area network ( WAN ) , or 
the Internet . Additionally , such communication links facili 
tate optical signal paths among both IoT devices 1004 and 
gateways 1054 , including the use of MUXing / deMUXing 
components that facilitate interconnection of the various 
devices . 
[ 0106 ] The network topology may include any number of 
types of IoT networks , such as a mesh network provided 
with the network 1056 using Bluetooth low energy ( BLE ) 
links 1022. Other types of IoT networks that may be present 
include a wireless local area network ( WLAN ) network 
1058 used to communicate with IoT devices 1004 through 
IEEE 802.11 ( Wi - Fi® ) links 1028 , a cellular network 1060 
used to communicate with IoT devices 1004 through an 
LTE / LTE - A ( 4G ) or 5G cellular network , and a low - power 
wide area ( LPWA ) network 1062 , for example , a LPWA 
network compatible with the LoRaWan specification pro 
mulgated by the LoRa alliance , or a IPv6 over Low Power 
Wide - Area Networks ( LPWAN ) network compatible with a 
specification promulgated by the Internet Engineering Task 
Force ( IETF ) . Further , the respective IoT networks may 
communicate with an outside network provider ( e.g. , a tier 
2 or tier 3 provider ) using any number of communications 
links , such as an LTE cellular link , an LPWA link , or a link 
based on the IEEE 802.15.4 standard , such as Zigbee® . The 
respective IoT networks may also operate with use of a 
variety of network and internet application protocols such as 

Constrained Application Protocol ( COAP ) . The respective 
IoT networks may also be integrated with coordinator 
devices that provide a chain of links that forms cluster tree 
of linked devices and networks . 

[ 0107 ] Each of these loT networks may provide opportu 
nities for new technical features , such as those as described 
herein . The improved technologies and networks may 
enable the exponential growth of devices and networks , 
including the use of IoT networks into as fog devices or 
systems . As the use of such improved technologies grows , 
the IoT networks may be developed for self - management , 
functional evolution , and collaboration , without needing 
direct human intervention . The improved technologies may 
even enable IoT networks to function without centralized 
controlled systems . Accordingly , the improved technologies 
described herein may be used to automate and enhance 
network management and operation functions far beyond 
current implementations . 
[ 0108 ] In an example , communications between IoT 
devices 1004 , such as over the backbone links 1002 , may be 
protected by a decentralized system for authentication , 
authorization , and accounting ( AAA ) . In a decentralized 
AAA system , distributed payment , credit , audit , authoriza 
tion , and authentication systems may be implemented across 
interconnected heterogeneous network infrastructure . This 
allows systems and networks to move towards autonomous 
operations . In these types of autonomous operations , 
machines may even contract for human resources and nego 
tiate partnerships with other machine networks . This may 
allow the achievement of mutual objectives and balanced 
service delivery against outlined , planned service level 
agreements as well as achieve solutions that provide meter 
ing , measurements , traceability and trackability . The cre 
ation of new supply chain structures and methods may 
enable a multitude of services to be created , mined for value , 
and collapsed without any human involvement . 
[ 0109 ] Such IoT networks may be further enhanced by the 
integration of sensing technologies , such as sound , light , 
electronic traffic , facial and pattern recognition , smell , vibra 
tion , into the autonomous organizations among the IoT 
devices . The integration of sensory systems may allow 
systematic and autonomous communication and coordina 
tion of service delivery against contractual service objec 
tives , orchestration and quality of service ( QoS ) based 
swarming and fusion of resources . Some of the individual 
examples of network - based resource processing include the 
following 
[ 0110 ] The mesh network 1056 , for instance , may be 
enhanced by systems that perform inline data - to - information 
transforms . For example , self - forming chains of processing 
resources comprising a multi - link network may distribute 
the transformation of raw data to information in an efficient 
manner , and the ability to differentiate between assets and 
resources and the associated management of each . Further 
more , the proper components of infrastructure and resource 
based trust and service indices may be inserted to improve 
the data integrity , quality , assurance and deliver a metric of 
data confidence . 

[ 0111 ] The WLAN network 1058 , for instance , may use 
systems that perform standards conversion to provide multi 
standard connectivity , enabling IoT devices 1004 using 
different protocols to communicate . Further systems may 
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of IoT devices 1102. Further , the use of a mesh network may 
allow IoT devices 1102 that are very low power or located 
at a distance from infrastructure to be used , as the range to 
connect to another IoT device 1102 may be much less than 
the range to connect to the gateways 1104 . 
[ 0118 ] The fog 1120 provided from these IoT devices 1102 
may be presented to devices in the cloud 1100 , such as a 
server 1106 , as a single device located at the edge of the 
cloud 1100 , e.g. , a fog device . In this example , the alerts 
coming from the fog device may be sent without being 
identified as coming from a specific IoT device 1102 within 
the fog 1120. In this fashion , the fog 1120 may be considered 
a distributed platform that provides computing and storage 
resources to perform processing or data - intensive tasks such 
as data analytics , data aggregation , and machine - learning , 
among others . 

provide seamless interconnectivity across a multi - standard 
infrastructure comprising visible Internet resources and hid 
den Internet resources . 
[ 0112 ] Communications in the cellular network 1060 , for 
instance , may be enhanced by systems that offload data , 
extend communications to more remote devices , or both . 
The LPWA network 1062 may include systems that perform 
non - Internet protocol ( IP ) to IP interconnections , address 
ing , and routing . Further , each of the IoT devices 1004 may 
include the appropriate transceiver for wide area communi 
cations with that device . Further , each IoT device 1004 may 
include other transceivers for communications using addi 
tional protocols and frequencies . 
[ 0113 ] Finally , clusters of IoT devices may be equipped to 
communicate with other IoT devices as well as with a cloud 
network . This may allow the IoT devices to form an ad - hoc 
network between the devices , allowing them to function as 
a single device , which may be termed a fog device . This 
configuration is discussed further with respect to FIG . 11 
below . 
[ 0114 ] FIG . 11 illustrates a cloud computing network in 
communication with a mesh network of IoT devices ( de 
vices 1102 ) operating as a fog device at the edge of the cloud 
computing network . The mesh network of IoT devices may 
be termed a fog 1120 , operating at the edge of the cloud 
1100. To simplify the diagram , not every IoT device 1102 is 
labeled 
[ 0115 ] The fog 1120 may be considered to be a massively 
interconnected network wherein a number of IoT devices 
1102 are in communications with each other , for example , 
by radio links 1122. As an example , this interconnected 
network may be facilitated using an interconnect specifica 
tion released by the Open Connectivity FoundationTM 
( OCF ) . This standard allows devices to discover each other 
and establish communications for interconnects . Other inter 
connection protocols may also be used , including , for 
example , the optimized link state routing ( OLSR ) Protocol , 
the better approach to mobile ad - hoc networking ( B.A.T.M. 
A.N. ) routing protocol , or the OMA Lightweight M2M 
( LWM2M ) protocol , among others . 
[ 0116 ] Three types of IoT devices 1102 are shown in this 
example , gateways 1104 , data aggregators 1126 , and sensors 
1128 , although any combinations of IoT devices 1102 and 
functionality may be used . The gateways 1104 may be edge 
devices that provide communications between the cloud 
1100 and the fog 1120 , and may also provide the backend 
process function for data obtained from sensors 1128 , such 
as motion data , flow data , temperature data , and the like . The 
data aggregators 1126 may collect data from any number of 
the sensors 1128 , and perform the back - end processing 
function for the analysis . The results , raw data , or both may 
be passed along to the cloud 1100 through the gateways 
1104. The sensors 1128 may be full IoT devices 1102 , for 
example , capable of both collecting data and processing the 
data . In some cases , the sensors 1128 may be more limited 
in functionality , for example , collecting the data and allow 
ing the data aggregators 1126 or gateways 1104 to process 
the data . 
[ 0117 ] Communications from any IoT device 1102 may be 
passed along a convenient path ( e.g. , a most convenient 
path ) between any of the IoT devices 1102 to reach the 
gateways 1104. In these networks , the number of intercon 
nections provide substantial redundancy , allowing commu 
nications to be maintained , even with the loss of a number 

[ 0119 ] In some examples , the IoT devices 1102 may be 
configured using an imperative programming style , e.g. , 
with each IoT device 1102 having a specific function and 
communication partners . However , the IoT devices 1102 
forming the fog device may be configured in a declarative 
programming style , allowing the IoT devices 1102 to recon 
figure their operations and communications , such as to 
determine needed resources in response to conditions , que 
ries , and device failures . As an example , a query from a user 
located at a server 1106 about the operations of a subset of 
equipment monitored by the IoT devices 1102 may result in 
the fog 1120 device selecting the IoT devices 1102 , such as 
particular sensors 1128 , needed to answer the query . The 
data from these sensors 1128 may then be aggregated and 
analyzed by any combination of the sensors 1128 , data 
aggregators 1126 , or gateways 1104 , before being sent on by 
the fog 1120 device to the server 1106 to answer the query . 
In this example , IoT devices 1102 in the fog 1120 may select 
the sensors 1128 used based on the query , such as adding 
data from flow sensors or temperature sensors . Further , if 
some of the IoT devices 1102 are not operational , other IoT 
devices 1102 in the fog 1120 device may provide analogous 
data , if available . 
[ 0120 ] FIG . 12 illustrates a drawing of a cloud computing 
network , or cloud 1200 , in communication with a number of 
Internet of Things ( IoT ) devices . The cloud 1200 may 
represent the Internet , or may be a local area network 
( LAN ) , or a wide area network ( WAN ) , such as a proprietary 
network for a company . The IoT devices may include any 
number of different types of devices , grouped in various 
combinations . For example , a traffic control group 1206 may 
include IoT devices along streets in a city . These IoT devices 
may include stoplights , traffic flow monitors , cameras , 
weather sensors , and the like . The traffic control group 1206 , 
or other subgroups , may be in communication with the cloud 
1200 through wired or wireless links 1208 , such as LPWA 
links , optical links , and the like . Further , a wired or wireless 
sub - network 1212 may allow the IoT devices to communi 
cate with each other , such as through a local area network , 
a wireless local area network , and the like . The IoT devices 
may use another device , such as a gateway 1210 or 1228 to 
communicate with remote locations such as the cloud 1200 ; 
the IoT devices may also use one or more servers 1230 to 
facilitate communication with the cloud 1200 or with the 
gateway 1210. For example , the one or more servers 1230 
may operate as an intermediate network node to support a 
local edge cloud or fog implementation among a local area 
network . Further , the gateway 1228 that is depicted may 
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operate in a cloud - to - gateway - to - many edge devices con 
figuration , such as with the various IoT devices 1214 , 1220 , 
1224 being constrained or dynamic to an assignment and use 
of resources in the cloud 1200 . 
[ 0121 ] Other example groups of IoT devices may include 
remote weather stations 1214 , local information terminals 
1216 , alarm systems 1218 , automated teller machines 1220 , 
alarm panels 1222 , or moving vehicles , such as emergency 
vehicles 1224 or other vehicles 1226 , among many others . 
Each of these IoT devices may be in communication with 
other IoT devices , with servers 1204 , with another IoT fog 
device or system ( not shown , but depicted in FIG . 11 ) , or a 
combination therein . The groups of IoT devices may be 
deployed in various residential , commercial , and industrial 
settings ( including in both private or public environments ) . 
[ 0122 ] As can be seen from FIG . 12 , a large number of IoT 
devices may be communicating through the cloud 1200 . 
This may allow different IoT devices to request or provide 
information to other devices autonomously . For example , a 
group of IoT devices ( e.g. , the traffic control group 1206 ) 
may request a current weather forecast from a group of 
remote weather stations 1214 , which may provide the fore 
cast without human intervention . Further , an emergency 
vehicle 1224 may be alerted by an automated teller machine 
1220 that a burglary is in progress . As the emergency vehicle 
1224 proceeds towards the automated teller machine 1220 , 
it may access the traffic control group 1206 to request 
clearance to the location , for example , by lights turning red 
to block cross traffic at an intersection in sufficient time for 
the emergency vehicle 1224 to have unimpeded access to the 
intersection . 
[ 0123 ] Clusters of IoT devices , such as the remote weather 
stations 1214 or the traffic control group 1206 , may be 
equipped to communicate with other IoT devices as well as 
with the cloud 1200. This may allow the IoT devices to form 
an ad - hoc network between the devices , allowing them to 
function as a single device , which may be termed a fog 
device or system ( e.g. , as described above with reference to 
FIG . 11 ) . 
[ 0124 ] FIG . 13 is a block diagram of an example of 
components that may be present in an IoT device 1350 for 
implementing the techniques described herein . The IoT 
device 1350 may include any combinations of the compo 
nents shown in the example or referenced in the disclosure 
above . The components may be implemented as ICs , por 
tions thereof , discrete electronic devices , or other modules , 
logic , hardware , software , firmware , or a combination 
thereof adapted in the IoT device 1350 , or as components 
otherwise incorporated within a chassis of a larger system . 
Additionally , the block diagram of FIG . 13 is intended to 
depict a high - level view of components of the IoT device 
1350. However , some of the components shown may be 
omitted , additional components may be present , and differ 
ent arrangement of the components shown may occur in 
other implementations . 
[ 0125 ] The IoT device 1350 may include a processor 
1352 , which may be a microprocessor , a multi - core proces 
sor , a multithreaded processor , an ultra - low voltage proces 
sor , an embedded processor , or other known processing 
element . The processor 1352 may be a part of a system on 
a chip ( SOC ) in which the processor 1352 and other com 
ponents are formed into a single integrated circuit , or a 
single package , such as the EdisonTM or GalileoTM SOC 
boards from Intel . As an example , the processor 1352 may 

include an Intel® Architecture CoreTM based processor , such 
as a QuarkTM , an AtomTM , an i3 , an i5 , an i7 , or an 
MCU - class processor , or another such processor available 
from Intel® Corporation , Santa Clara , Calif . However , any 
number other processors may be used , such as available 
from Advanced Micro Devices , Inc. ( AMD ) of Sunnyvale , 
Calif . , a MIPS - based design from MIPS Technologies , Inc. 
of Sunnyvale , Calif . , an ARM - based design licensed from 
ARM Holdings , Ltd. or customer thereof , or their licensees 
or adopters . The processors may include units such as an 
A5 - A10 processor from Apple® Inc. , a SnapdragonTM pro 
cessor from Qualcomm® Technologies , Inc. , 
OMAPTM processor from Texas Instruments , Inc. 
[ 0126 ] The processor 1352 may communicate with a sys 
tem memory 1354 over an interconnect 1356 ( e.g. , a bus ) . 
Any number of memory devices may be used to provide for 
a given amount of system memory . As examples , the 
memory may be random access memory ( RAM ) in accor 
dance with a Joint Electron Devices Engineering Council 
( JEDEC ) design such as the DDR or mobile DDR standards 
( e.g. , LPDDR , LPDDR2 , LPDDR3 , or LPDDR4 ) . In various 
implementations , the individual memory devices may be of 
any number of different package types such as single die 
package ( SDP ) , dual die package ( DDP ) or quad die package 
( Q17P ) . These devices , in some examples , may be directly 
soldered onto a motherboard to provide a lower profile 
solution , while in other examples the devices are configured 
as one or more memory modules that in turn couple to the 
motherboard by a given connector . Any number of other 
memory implementations may be used , such as other types 
of memory modules , e.g. , dual inline memory modules 
( DIMMs ) of different varieties including but not limited to 
microDIMMs or MiniDIMMs . 
[ 0127 ] To provide for persistent storage of information 
such as data , applications , operating systems and so forth , a 
storage 1358 may also couple to the processor 1352 via the 
interconnect 1356. In an example , the storage 1358 may be 
implemented via a solid state disk drive ( SSDD ) . Other 
devices that may be used for the storage 1358 include flash 
memory cards , such as SD cards , microSD cards , xD picture 
cards , and the like , and USB flash drives . In low power 
implementations , the storage 1358 may be on - die memory 
or registers associated with the processor 1352. However , in 
some examples , the storage 1358 may be implemented using 
a micro hard disk drive ( HDD ) . Further , any number of new 
technologies may be used for the storage 1358 in addition to , 
or instead of , the technologies described , such resistance 
change memories , phase change memories , holographic 
memories , or chemical memories , among others . 
[ 0128 ] The components may communicate over the inter 
connect 1356. The interconnect 1356 may include any 
number of technologies , including industry standard archi 
tecture ( ISA ) , extended ISA ( EISA ) , peripheral component 
interconnect ( PCI ) , peripheral component interconnect 
extended ( PCIx ) , PCI express ( PCIe ) , or any number of 
other technologies . The interconnect 1356 may be a propri 
etary bus , for example , used in a SoC based system . Other 
bus systems may be included , such as an 12C interface , an 
SPI interface , point to point interfaces , and a power bus , 
among others . 
[ 0129 ] The interconnect 1356 may couple the processor 
1352 to a mesh transceiver 1362 , for communications with 
other mesh devices 1364. The mesh transceiver 1362 may 
use any number of frequencies and protocols , such as 2.4 
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Gigahertz ( GHz ) transmissions under the IEEE 802.15.4 
standard , using the Bluetooth® low energy ( BLE ) standard , 
as defined by the Bluetooth® Special Interest Group , or the 
ZigBee® standard , among others . Any number of radios , 
configured for a particular wireless communication protocol , 
may be used for the connections to the mesh devices 1364 . 
For example , a WLAN unit may be used to implement 
Wi - FiTM communications in accordance with the Institute of 
Electrical and Electronics Engineers ( IEEE ) 802.11 stan 
dard . In addition , wireless wide area communications , e.g. , 
according to a cellular or other wireless wide area protocol , 
may occur via a WWAN unit . 
[ 0130 ] The mesh transceiver 1362 may communicate 
using multiple standards or radios for communications at 
different range . For example , the IoT device 1350 may 
communicate with close devices , e.g. , within about 10 
meters , using a local transceiver based on BLE , or another 
low power radio , to save power . More distant mesh devices 
1364 , e.g. , within about 50 meters , may be reached over 
ZigBee or other intermediate power radios . Both commu 
nications techniques may take place over a single radio at 
different power levels , or may take place over separate 
transceivers , for example , a local transceiver using BLE and 
a separate mesh transceiver using ZigBee . 
[ 0131 ] A wireless network transceiver 1366 may be 
included to communicate with devices or services in the 
cloud 1300 via local or wide area network protocols . The 
wireless network transceiver 1366 may be a LPWA trans 
ceiver that follows the IEEE 802.15.4 , or IEEE 802.15.4g 
standards , among others . The IoT device 1350 may com 
municate over a wide area using LoRaWANTM ( Long Range 
Wide Area Network ) developed by Semtech and the LoRa 
Alliance . The techniques described herein are not limited to 
these technologies , but may be used with any number of 
other cloud transceivers that implement long range , low 
bandwidth communications , such as Sigfox , and other tech 
nologies . Further , other communications techniques , such as 
time - slotted channel hopping , described in the IEEE 802 . 
15.4e specification may be used . 
[ 0132 ] An number of other radio communications and 
protocols may be used in addition to the systems mentioned 
for the mesh transceiver 1362 and wireless network trans 
ceiver 1366 , as described herein . For example , the radio 
transceivers 1362 and 1366 may include an LTE or other 
cellular transceiver that uses spread spectrum ( SPA / SAS ) 
communications for implementing high speed communica 
tions . Further , any number of other protocols may be used , 
such as Wi - Fi® networks for medium speed communica 
tions and provision of network communications . 
[ 0133 ] The radio transceivers 1362 and 1366 may include 
radios that are compatible with any number of 3GPP ( Third 
Generation Partnership Project ) specifications , notably Long 
Term Evolution ( LTE ) , Long Term Evolution - Advanced 
( LTE - A ) , and Long Term Evolution - Advanced Pro ( LTE - A 
Pro ) . It can be noted that radios compatible with any number 
of other fixed , mobile , or satellite communication technolo 
gies and standards may be selected . These may include , for 
example , any Cellular Wide Area radio communication 
technology , which may include e.g. a 5th Generation ( 5G ) 
communication systems , a Global System for Mobile Com 
munications ( GSM ) radio communication technology , a 
General Packet Radio Service ( GPRS ) radio communication 
technology , or an Enhanced Data Rates for GSM Evolution 
( EDGE ) radio communication technology , a UMTS ( Uni 

versal Mobile Telecommunications System ) communication 
technology , In addition to the standards listed above , any 
number of satellite uplink technologies may be used for the 
wireless network transceiver 1366 , including , for example , 
radios compliant with standards issued by the ITU ( Inter 
national Telecommunication Union ) , or the ETSI ( European 
Telecommunications Standards Institute ) , among others . 
The examples provided herein are thus understood as being 
applicable to various other communication technologies , 
both existing and not yet formulated . 
[ 0134 ] A network interface controller ( NIC ) 1368 may be 
included to provide a wired communication to the cloud 
1300 or to other devices , such as the mesh devices 1364. The 
wired communication may provide an Ethernet connection , 
or may be based on other types of networks , such as 
Controller Area Network ( CAN ) , Local Interconnect Net 
work ( LIN ) , DeviceNet , ControlNet , Data Highway + , PRO 
FIBUS , or PROFINET , among many others . An additional 
NIC 1368 may be included to allow connect to a second 
network , for example , a NIC 1368 providing communica 
tions to the cloud over Ethernet , and a second NIC 1368 
providing communications to other devices over another 
type of network . 
[ 0135 ] The interconnect 1356 may couple the processor 
1352 to an external interface 1370 that is used to connect 
external devices or subsystems . The external devices may 
include sensors 1372 , such as accelerometers , level sensors , 
flow sensors , optical light sensors , camera sensors , tempera 
ture sensors , a global positioning system ( GPS ) sensors , 
pressure sensors , barometric pressure sensors , and the like . 
The external interface 1370 further may be used to connect 
the IoT device 1350 to actuators 1374 , such as power 
switches , valve actuators , an audible sound generator , a 
visual warning device , and the like . 
[ 0136 ] In some optional examples , various input / output 
( I / O ) devices may be present within , or connected to , the IoT 
device 1350. For example , a display or other output device 
1384 may be included to show information , such as sensor 
readings or actuator position . An input device 1386 , such as 
a touch screen or keypad may be included to accept input . 
An output device 1384 may include any number of forms of 
audio or visual display , including simple visual outputs such 
as binary status indicators ( e.g. , LEDs ) and multi - character 
visual outputs , or more complex outputs such as display 
screens ( e.g. , LCD screens ) , with the output of characters , 
graphics , multimedia objects , and the like being generated or 
produced from the operation of the IoT device 1350 . 
[ 0137 ] A battery 1376 may power the IoT device 1350 , 
although in examples in which the IoT device 1350 is 
mounted in a fixed location , it may have a power supply 
coupled to an electrical grid . The battery 1376 may be a 
lithium ion battery , or a metal - air battery , such as a zinc - air 
battery , an aluminum - air battery , a lithium - air battery , and 
the like . 
[ 0138 ] A battery monitor / charger 1378 may be included in 
the IoT device 1350 to track the state of charge ( SoCh ) of the 
battery 1376. The battery monitor / charger 1378 may be used 
to monitor other parameters of the battery 1376 to provide 
failure predictions , such as the state of health ( SoH ) and the 
state of function ( SOF ) of the battery 1376. The battery 
monitor / charger 1378 may include a battery monitoring 
integrated circuit , such as an LTC4020 or an LTC2790 from 
Linear Technologies , an ADT7488A from ON Semiconduc 
tor of Phoenix Ariz . , or an IC from the UCD9Oxxx family 
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from Texas Instruments of Dallas , Tex . The battery monitor / 
charger 1378 may communicate the information on the 
battery 1376 to the processor 1352 over the interconnect 
1356. The battery monitor / charger 1378 may also include an 
analog - to - digital ( ADC ) convertor that allows the processor 
1352 to directly monitor the voltage of the battery 1376 or 
the current flow from the battery 1376. The battery param 
eters may be used to determine actions that the IoT device 
1350 may perform , such as transmission frequency , mesh 
network operation , sensing frequency , and the like . 
[ 0139 ] A power block 1380 , or other power supply 
coupled to a grid , may be coupled with the battery monitor / 
charger 1378 to charge the battery 1376. In some examples , 
the power block 1380 may be replaced with a wireless power 
receiver to obtain the power wirelessly , for example , through 
a loop antenna in the IoT device 1350. A wireless battery 
charging circuit , such as an LTC4020 chip from Linear 
Technologies of Milpitas , Calif . , among others , may be 
included in the battery monitor / charger 1378. The specific 
charging circuits chosen depend on the size of the battery 
1376 , and thus , the current required . The charging may be 
performed using the Airfuel standard promulgated by the 
Airfuel Alliance , the Qi wireless charging standard promul 
gated by the Wireless Power Consortium , or the Rezence 
charging standard , promulgated by the Alliance for Wireless 
Power , among others . 
[ 0140 ] The storage 1358 may include instructions 1382 in 
the form of software , firmware , or hardware commands to 
implement the techniques described herein . Although such 
instructions 1382 are shown as code blocks included in the 
memory 1354 and the storage 1358 , it may be understood 
that of the code blocks may be replaced with hardwired 
circuits , for example , built into an application specific 
integrated circuit ( ASIC ) . 
[ 0141 ] In an example , the instructions 1382 provided via 
the memory 1354 , the storage 1358 , or the processor 1352 
may be embodied as a non - transitory , machine readable 
medium 1360 including code to direct the processor 1352 to 
perform electronic operations in the IoT device 1350. The 
processor 1352 may access the non - transitory , machine 
readable medium 1360 over the interconnect 1356. For 
instance , the non - transitory , machine readable medium 1360 
may include storage units such as optical disks , flash drives , 
or any number of other hardware devices . The non - transi 
tory , machine readable medium 1360 may include instruc 
tions to direct the processor 1352 to perform a specific 
sequence or flow of actions , for example , as described with 
respect to the flowchart ( s ) and diagram ( s ) of operations and 
functionality described throughout this disclosure . 
[ 0142 ] FIG . 14 illustrates a block diagram for an example 
embodiment of a multiprocessor 1400. In some embodi 
ments , the processing architecture of FIG . 14 may be used 
to implement the functionality described throughout this 
disclosure . Other embodiments may use other processor and 
system designs and configurations known in the art , for 
example , for laptops , desktops , handheld PCs , personal 
digital assistants , engineering workstations , servers , net 
work devices , network hubs , switches , embedded proces 
sors , digital signal processors ( DSPs ) , graphics devices , 
video game devices , set - top boxes , micro controllers , cell 
phones , portable media players , hand held devices , and 
various other electronic devices , are also suitable . In general , 
a huge variety of systems or electronic devices capable of 

any 

incorporating a processor and / or other execution logic as 
disclosed herein are generally suitable . 
[ 0143 ] As shown in FIG . 14 , multiprocessor system 1400 
is a point - to - point interconnect system , and includes a first 
processor 1470 and a second processor 1480 coupled via a 
point - to - point interconnect 1450 . 
[ 0144 ] Processors 1470 and 1480 are shown including 
integrated memory controller ( IMC ) units 1472 and 1482 , 
respectively . Processor 1470 also includes as part of its bus 
controller units point - to - point ( P - P ) interfaces 1476 and 
1478 ; similarly , second processor 1480 includes P - P inter 
faces 1486 and 1488. Processors 1470 , 1480 may exchange 
information via a point - to - point ( P - P ) interface 1450 using 
P - P interface circuits 1478 , 1488. As shown in FIG . 14 , 
IMCs 1472 and 1482 couple the processors to respective 
memories , namely a memory 1432 and a memory 1434 , 
which may be portions of main memory locally attached to 
the respective processors . 
[ 0145 ] Processors 1470 , 1480 may each exchange infor 
mation with a chipset 1490 via individual P - P interfaces 
1452 , 1454 using point to point interface circuits 1476 , 
1494 , 1486 , 1498. Chipset 1490 may optionally exchange 
information with the coprocessor 1438 via a high - perfor 
mance interface 1439. In one embodiment , the coprocessor 
1438 is a special - purpose processor , such as , for example , a 
high - throughput MIC processor , a network or communica 
tion processor , compression engine , graphics processor , 
GPGPU , embedded processor , matrix processor , or the like . 
[ 0146 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
[ 0147 ] Chipset 1490 may be coupled to a first bus 1416 via 
an interface 1496. In one embodiment , first bus 1416 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of this disclosure is not 
so limited . 
[ 0148 ] As shown in FIG . 14 , various I / O devices 1414 
may be coupled to first bus 1416 , along with a bus bridge 
1418 which couples first bus 1416 to a second bus 1420. In 
one embodiment , one or more additional processor ( s ) 1415 , 
such as coprocessors , high - throughput MIC processors , 
GPGPU's , accelerators ( such as , e.g. , graphics accelerators 
or digital signal processing ( DSP ) units ) , matrix processors , 
field programmable gate arrays , or any other processor , are 
coupled to first bus 1416. In one embodiment , second bus 
1420 may be a low pin count ( LPC ) bus . Various devices 
may be coupled to a second bus 1420 including , for 
example , a keyboard and / or mouse 1422 , communication 
devices 1427 and a storage unit 1428 such as a disk drive or 
other mass storage device which may include instructions / 
code and data 1430 , in one embodiment . Further , an audio 
I / O 1424 may be coupled to the second bus 1420. Note that 
other architectures are possible . For example , instead of the 
point - to - point architecture of FIG . 14 , a system may imple 
ment a multi - drop bus or other such architecture . 
[ 0149 ] All or part of any component of FIG . 14 may be 
implemented as a separate or stand - alone component or 
chip , or may be integrated with other components or chips , 
such as a system - on - a - chip ( SOC ) that integrates various 
computer components into a single chip . 
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[ 0150 ] Embodiments of the mechanisms disclosed herein 
may be implemented in hardware , software , firmware , or a 
combination of such implementation approaches . Certain 
embodiments may be implemented as computer programs or 
program code executing on programmable systems compris 
ing at least one processor , a storage system ( including 
volatile and non - volatile memory and / or storage elements ) , 
at least one input device , and at least one output device . 
[ 0151 ] Program code , such as code 1430 illustrated in 
FIG . 14 , may be applied to input instructions to perform the 
functions described herein and generate output information . 
The output information may be applied to one or more 
output devices , in known fashion . For purposes of this 
application , a processing system includes any system that 
has a processor , such as , for example ; a digital signal 
processor ( DSP ) , a microcontroller , an application specific 
integrated circuit ( ASIC ) , or a microprocessor . 
[ 0152 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 
[ 0153 ] One or more aspects of at least one embodiment 
may be implemented by representative instructions stored on 
a machine - readable medium which represents various logic 
within the processor , which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein . Such representations , known as “ IP cores ” 
may be stored on a tangible , machine readable medium and 
supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor . 
[ 0154 ] Such machine - readable storage media may 
include , without limitation , non - transitory , tangible arrange 
ments of articles manufactured or formed by a machine or 
device , including storage media such as hard disks , any 
other type of disk including floppy disks , optical disks , 
compact disk read - only memories ( CD - ROMs ) , compact 
disk rewritable's ( CD - RWs ) , and magneto - optical disks , 
semiconductor devices such as read - only memories 
( ROMs ) , random access memories ( RAMS ) such as 
dynamic random access memories ( DRAMs ) , static random 
access memories ( SRAMs ) , erasable programmable read 
only memories ( EPROMs ) , flash memories , electrically 
erasable programmable read - only memories ( EEPROMs ) , 
phase change memory ( PCM ) , magnetic or optical cards , or 
any other type of media suitable for storing electronic 
instructions . 
[ 0155 ] Accordingly , embodiments of this disclosure also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 
[ 0156 ] The machine - readable instructions described 
herein may be stored in one or more of a compressed format , 
an encrypted format , a fragmented format , a packaged 
format , etc. Machine readable instructions as described 
herein may be stored as data ( e.g. , portions of instructions , 
code , representations of code , etc. ) that may be utilized to 

create , manufacture , and / or produce machine executable 
instructions . For example , the machine - readable instructions 
may be fragmented and stored on one or more storage 
devices and / or computing devices ( e.g. , servers ) . The 
machine - readable instructions may require one or more of 
installation , modification , adaptation , updating , combining , 
supplementing , configuring , decryption , decompression , 
unpacking , distribution , reassignment , etc. in order to make 
them directly readable and / or executable by a computing 
device and / or other machine . For example , the machine 
readable instructions may be stored in multiple parts , which 
are individually compressed , encrypted , and stored on sepa 
rate computing devices , wherein the parts when decrypted , 
decompressed , and combined form a set of executable 
instructions that implement a program such as that described 
herein . In another example , the machine - readable instruc 
tions may be stored in a state in which they may be read by 
a computer , but require addition of a library ( e.g. , a dynamic 
link library ) , a software development kit ( SDK ) , an appli 
cation programming interface ( API ) , etc. in order to execute 
the instructions on a particular computing device or other 
device . In another example , the machine - readable instruc 
tions may need to be configured ( e.g. , settings stored , data 
input , network addresses recorded , etc. ) before the machine 
readable instructions and / or the corresponding program ( s ) 
can be executed in whole or in part . Thus , the disclosed 
machine - readable instructions and / or corresponding pro 
gram ( s ) are intended to encompass such machine - readable 
instructions and / or program ( s ) regardless of the particular 
format or state of the machine readable instructions and / or 
program ( s ) when stored or otherwise at rest or in transit . 
[ 0157 ] The flowcharts and block diagrams in the FIG 
URES illustrate the architecture , functionality , and operation 
of possible implementations of systems , methods and com 
puter program products according to various aspects of the 
present disclosure . In this regard , each block in the flowchart 
or block diagrams may represent a module , segment , or 
portion of code , which comprises one or more executable 
instructions for implementing the specified logical function 
( s ) . It should also be noted that , in some alternative imple 
mentations , the functions noted in the block may occur out 
of the order noted in the figures . For example , two blocks 
shown in succession may , in fact , be executed substantially 
concurrently , or the blocks may sometimes be executed in 
the reverse order or alternative orders , depending upon the 
functionality involved . It will also be noted that each block 
of the block diagrams and / or flowchart illustration , and 
combinations of blocks in the block diagrams and / or flow 
chart illustration , can be implemented by special purpose 
hardware - based systems that perform the specified functions 
or acts , or combinations of special purpose hardware and 
computer instructions . 
[ 0158 ] The foregoing disclosure outlines features of sev 
eral embodiments so that those skilled in the art may better 
understand various aspects of the present disclosure . Those 
skilled in the art should appreciate that they may readily use 
the present disclosure as a basis for designing or modifying 
other processes and structures for carrying out the same 
purposes and / or achieving the same advantages of the 
embodiments introduced herein . Those skilled in the art 
should also realize that such equivalent constructions do not 
depart from the spirit and scope of the present disclosure , 
and that they may make various changes , substitutions , and 
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alterations herein without departing from the spirit and 
scope of the present disclosure . 
[ 0159 ] All or part of any hardware element disclosed 
herein may readily be provided in a system - on - a - chip ( SOC ) , 
including a central processing unit ( CPU ) package . An SoC 
represents an integrated circuit ( IC ) that integrates compo 
nents of a computer or other electronic system into a single 
chip . The SoC may contain digital , analog , mixed - signal , 
and radio frequency functions , all of which may be provided 
on a single chip substrate . Other embodiments may include 
a multi - chip - module ( MCM ) , with a plurality of chips 
located within a single electronic package and configured to 
interact closely with each other through the electronic pack 
age . In various other embodiments , the computing function 
alities disclosed herein may be implemented in one or more 
silicon cores in Application Specific Integrated Circuits 
( ASICs ) , Field Programmable Gate Arrays ( FPGAs ) , and 
other semiconductor chips . 
[ 0160 ] As used throughout this specification , the term 
“ processor ” or “ microprocessor ” should be understood to 
include not only a traditional microprocessor ( such as 
Intel'sº industry - leading x86 and x64 architectures ) , but also 
graphics processors , matrix processors , and any ASIC , 
FPGA , microcontroller , digital signal processor ( DSP ) , pro 
grammable logic device , programmable logic array ( PLA ) , 
microcode , instruction set , emulated or virtual machine 
processor , or any similar “ Turing - complete ” device , combi 
nation of devices , or logic elements ( hardware or software ) 
that permit the execution of instructions . 
[ 0161 ] Note also that in certain embodiments , some of the 
components may be omitted or consolidated . In a general 
sense , the arrangements depicted in the figures should be 
understood as logical divisions , whereas a physical archi 
tecture may include various permutations , combinations , 
and / or hybrids of these elements . It is imperative to note that 
countless possible design configurations can be used to 
achieve the operational objectives outlined herein . Accord 
ingly , the associated infrastructure has a myriad of substitute 
arrangements , design choices , device possibilities , hardware 
configurations , software implementations , and equipment 
options . 
[ 0162 ] In a general sense , any suitably - configured proces 
sor can execute instructions associated with data or micro 
code to achieve the operations detailed herein . Any proces 
sor disclosed herein could transform an element or an article 
( for example , data ) from one state or thing to another state 
or thing . In another example , some activities outlined herein 
may be implemented with fixed logic or programmable logic 
( for example , software and / or computer instructions 
executed by a processor ) and the elements identified herein 
could be some type of a programmable processor , program 
mable digital logic ( for example , a field programmable gate 
array ( FPGA ) , an erasable programmable read only memory 
( EPROM ) , an electrically erasable programmable read only 
memory ( EEPROM ) ) , an ASIC that includes digital logic , 
software , code , electronic instructions , flash memory , opti 
cal disks , CD - ROMs , DVD ROMs , magnetic or optical 
cards , other types of machine - readable mediums suitable for 
storing electronic instructions , or any suitable combination 
thereof . 
[ 0163 ] In operation , a storage may store information in 
any suitable type of tangible , non - transitory storage medium 
( for example , random access memory ( RAM ) , read only 
memory ( ROM ) , field programmable gate array ( FPGA ) , 

erasable programmable read only memory ( EPROM ) , elec 
trically erasable programmable ROM ( EEPROM ) , or micro 
code ) , software , hardware ( for example , processor instruc 
tions or microcode ) , or in any other suitable component , 
device , element , or object where appropriate and based on 
particular needs . Furthermore , the information being 
tracked , sent , received , or stored in a processor could be 
provided in any database , register , table , cache , queue , 
control list , or storage structure , based on particular needs 
and implementations , all of which could be referenced in 
any suitable timeframe . Any of the memory or storage 
elements disclosed herein should be construed as being 
encompassed within the broad terms “ memory ' and ' stor 
age , ' as appropriate . A non - transitory storage medium herein 
is expressly intended to include any non - transitory special 
purpose or programmable hardware configured to provide 
the disclosed operations , or to cause a processor to perform 
the disclosed operations . A non - transitory storage medium . 
also expressly includes a processor having stored thereon 
hardware - coded instructions , and optionally microcode 
instructions or sequences encoded in hardware , firmware , or 
software . 
[ 0164 ) Computer program logic implementing all or part 
of the functionality described herein is embodied in various 
forms , including , but in no way limited to , hardware descrip 
tion language , a source code form , a computer executable 
form , machine instructions or microcode , programmable 
hardware , and various intermediate forms ( for example , 
forms generated by an HDL processor , assembler , compiler , 
linker , or locator ) . In an example , source code includes a 
series of computer program instructions implemented in 
various programming languages , such as an object code , an 
assembly language , or a high - level language such as 
OpenCL , FORTRAN , C , C ++ , JAVA , or HTML for use with 
various operating systems or operating environments , or in 
hardware description languages such as Spice , Verilog , and 
VHDL . The source code may define and use various data 
structures and communication messages . The source code 
may be in a computer executable form ( e.g. , via an inter 
preter ) , or the source code may be converted ( e.g. , via a 
translator , assembler , or compiler ) into a computer execut 
able form , or converted to an intermediate form such as byte 
code . Where appropriate , any of the foregoing may be used 
to build or describe appropriate discrete or integrated cir 
cuits , whether sequential , combinatorial , state machines , or 
otherwise . 
[ 0165 ] In one example , any number of electrical circuits of 
the FIGURES may be implemented on a board of an 
associated electronic device . The board can be a general 
circuit board that can hold various components of the 
internal electronic system of the electronic device and , 
further , provide connectors for other peripherals . More spe 
cifically , the board can provide the electrical connections by 
which the other components of the system can communicate 
electrically . Any suitable processor and memory can be 
suitably coupled to the board based on particular configu 
ration needs , processing demands , and computing designs . 
Other components such as external storage , additional sen 
sors , controllers for audio / video display , and peripheral 
devices may be attached to the board as plug - in cards , via 
cables , or integrated into the board itself . In another 
example , the electrical circuits of the FIGURES may be 
implemented as stand - alone modules ( e.g. , a device with 
associated components and circuitry configured to perform 
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a specific application or function ) or implemented as plug - in 
modules into application specific hardware of electronic 
devices . 
[ 0166 ] Note that with the numerous examples provided 
herein , interaction may be described in terms of two , three , 
four , or more electrical components . However , this has been 
done for purposes of clarity and example only . It should be 
appreciated that the system can be consolidated or recon 
figured in any suitable manner . Along similar design alter 
natives , any of the illustrated components , modules , and 
elements of the FIGURES may be combined in various 
possible configurations , all of which are within the broad 
scope of this specification . In certain cases , it may be easier 
to describe one or more of the functionalities of a given set 
of flows by only referencing a limited number of electrical 
elements . It should be appreciated that the electrical circuits 
of the FIGURES and its teachings are readily scalable and 
can accommodate a large number of components , as well as 
more complicated / sophisticated arrangements and configu 
rations . Accordingly , the examples provided should not limit 
the scope or inhibit the broad teachings of the electrical 
circuits as potentially applied to a myriad of other architec 
tures . 

[ 0167 ] Numerous other changes , substitutions , variations , 
alterations , and modifications may be ascertained to one 
skilled in the art and it is intended that the present disclosure 
encompass all such changes , substitutions , variations , altera 
tions , and modifications as falling within the scope of the 
appended claims . 

Example Implementations 
[ 0168 ] The following examples pertain to embodiments 
described throughout this disclosure . 
[ 0169 ] One or more embodiments may include an appa 
ratus , comprising : a communication interface ; and process 
ing circuitry to : receive , via the communication interface , 
wireless signal data corresponding to a radio frequency 
identification ( RFID ) tag , wherein the wireless signal data 
comprises signal strength data and signal phase data , 
wherein the signal strength data and the signal phase data 
correspond to a plurality of wireless signals transmitted by 
the RFID tag and received by a radio frequency identifica 
tion ( RFID ) reader , generate decomposed signal strength 
data based on a seasonal decomposition of the signal 
strength data , wherein the decomposed signal strength data 
comprises a seasonal data series , a trend data series , and a 
residual data series ; generate a frequency - phase curve based 
on the signal phase data , wherein the frequency - phase curve 
indicates a plurality of signal phases detected across a 
plurality of transmission frequencies of the plurality of 
wireless signals ; extract a set of signal strength features 
based on the decomposed signal strength data ; extract a set 
of signal phase features based on the frequency - phase curve ; 
and detect a motion state of the RFID tag using a machine 
learning classifier , wherein the machine learning classifier is 
trained to detect the motion state of the RFID tag based at 
least on the set of signal strength features and the set of 
signal phase features . 
[ 0170 ] In one example embodiment of an apparatus : the 
RFID tag is associated with a physical asset ; and the 
processing circuitry is further to detect behavior associated 
with the physical asset based on the motion state of the RFID 
tag . 

[ 0171 ] In one example embodiment of an apparatus : the 
physical asset comprises a retail product ; and the behavior 
associated with the physical asset comprises a human inter 
action with the retail product . 
[ 0172 ] In one example embodiment of an apparatus , the 
motion state of the RFID tag comprises : a time of occurrence 
of the motion state ; an identifier of the RFID tag ; an 
indication of whether the RFID tag is stationary or moving ; 
and a movement energy intensity of the RFID tag . 
[ 0173 ] In one example embodiment of an apparatus , the 
set of signal strength features comprises : trend data 
extracted from the trend data series of the decomposed 
signal strength data ; residual data extracted from the residual 
data series of the decomposed signal strength data ; and a 
standard deviation of received signal strength indicators 
( RSSIS ) extracted from the signal strength data . 
[ 0174 ] In one example embodiment of an apparatus , the 
set of signal phase features comprises : a slope of a linear 
regression of the frequency - phase curve ; a correlation coef 
ficient of a least - squares regression of the frequency - phase 
curve ; a descending trend corresponding to a phase variation 
of the plurality of signal phases ; a dynamic range of the 
plurality of signal phases ; and a number of zero crossings of 
the frequency - phase curve . 
[ 0175 ] In one example embodiment of an apparatus , the 
machine learning classifier comprises a voting classifier , 
wherein the voting classifier is to detect the motion state of 
the RFID tag based on motion state predictions from a 
plurality of machine learning models . 
[ 0176 ] In one example embodiment of an apparatus , the 
plurality of machine learning models comprises a random 
forest model and a logistic regression model . 
[ 0177 ] In one example embodiment of an apparatus , the 
machine learning classifier comprises a single model clas 
sifier , wherein the single model classifier comprises : a 
support - vector machine ( SVM ) model ; a random forest 
model ; or a logistic regression model . 
[ 0178 ] In one example embodiment of an apparatus , the 
processing circuitry is further to : normalize a sampling rate 
of the wireless signal data , wherein the sampling rate is to 
be normalized based on upsampling or downsampling the 
wireless signal data . 
[ 0179 ] In one example embodiment of an apparatus , the 
processing circuitry to generate the frequency - phase curve 
based on the signal phase data is to : perform spectral 
linearity tracking on the signal phase data to generate the 
frequency - phase curve . 
[ 0180 ] One or more embodiments may include at least one 
non - transitory machine accessible storage medium having 
instructions stored thereon , wherein the instructions , when 
executed on a machine , cause the machine to : receive , via a 
communication interface , wireless signal data correspond 
ing to a radio frequency identification ( RFID ) tag , wherein 
the wireless signal data comprises signal strength data and 
signal phase data , wherein the signal strength data and the 
signal phase data correspond to a plurality of wireless 
signals transmitted by the RFID tag and received by a radio 
frequency identification ( RFID ) reader ; generate decom 
posed signal strength data based on a seasonal decomposi 
tion of the signal strength data , wherein the decomposed 
signal strength data comprises a seasonal data series , a trend 
data series , and a residual data series ; generate a frequency 
phase curve based on the signal phase data , wherein the 
frequency - phase curve indicates a plurality of signal phases 
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detected across a plurality of transmission frequencies of the 
plurality of wireless signals ; extract a set of signal strength 
features based on the decomposed signal strength data ; 
extract a set of signal phase features based on the frequency 
phase curve ; and detect a motion state of the RFID tag using 
a machine learning classifier , wherein the machine learning 
classifier is trained to detect the motion state of the RFID tag 
based at least on the set of signal strength features and the 
set of signal phase features . 
[ 0181 ] In one example embodiment of a storage medium : 
the RFID tag is associated with a physical asset ; and the 
instructions further cause the machine to detect behavior 
associated with the physical asset based on the motion state 
of the RFID tag . 
[ 0182 ] In one example embodiment of a storage medium : 
the physical asset comprises a retail product ; and the behav 
ior associated with the physical asset comprises a human 
interaction with the retail product . 
[ 0183 ] In one example embodiment of a storage medium , 
the motion state of the RFID tag comprises : a time of 
occurrence of the motion state ; an identifier of the RFID tag ; 
an indication of whether the RFID tag is stationary or 
moving ; and a movement energy intensity of the RFID tag . 
[ 0184 ] In one example embodiment of a storage medium , 
the set of signal strength features comprises : trend data 
extracted from the trend data series of the decomposed 
signal strength data ; residual data extracted from the residual 
data series of the decomposed signal strength data ; and a 
standard deviation of received signal strength indicators 
( RSSIs ) extracted from the signal strength data . 
[ 0185 ] In one example embodiment of a storage medium , 
the set of signal phase features comprises : a slope of a linear 
regression of the frequency - phase curve ; a correlation coef 
ficient of a least - squares regression of the frequency - phase 
curve ; a descending trend corresponding to a phase variation 
of the plurality of signal phases ; a dynamic range of the 
plurality of signal phases ; and a number of zero crossings of 
the frequency - phase curve . 
[ 0186 ] In one example embodiment of a storage medium , 
the machine learning classifier comprises a voting classifier , 
wherein the voting classifier is to detect the motion state of 
the RFID tag based on motion state predictions from a 
plurality of machine learning models . 
[ 0187 ] In one example embodiment of a storage medium , 
the plurality of machine learning models comprises a ran 
dom forest model and a logistic regression model . 
[ 0188 ] One or more embodiments may include a method , 
comprising : receiving , via a communication interface , wire 
less signal data corresponding to a radio frequency identi 
fication ( RFID ) tag , wherein the wireless signal data com 
prises signal strength data and signal phase data , wherein the 
signal strength data and the signal phase data correspond to 
a plurality of wireless signals transmitted by the RFID tag 
and received by a radio frequency identification ( RFID ) 
reader , generating decomposed signal strength data based on 
a seasonal decomposition of the signal strength data , 
wherein the decomposed signal strength data comprises a 
seasonal data series , a trend data series , and a residual data 
series , generating a frequency - phase curve based on the 
signal phase data , wherein the frequency - phase curve indi 
cates a plurality of signal phases detected across a plurality 
of transmission frequencies of the plurality of wireless 
signals ; extracting a set of signal strength features based on 
the decomposed signal strength data ; extracting a set of 

signal phase features based on the frequency - phase curve ; 
and detecting a motion state of the RFID tag using a machine 
learning classifier , wherein the machine learning classifier is 
trained to detect the motion state of the RFID tag based at 
least on the set of signal strength features and the set of 
signal phase features . 
[ 0189 ] In one example embodiment of a method , the 
method further comprises : detecting behavior associated 
with a physical asset based on the motion state of the RFID 
tag , wherein the RFID tag is associated with the physical 
asset . 
[ 0190 ] In one example embodiment of a method : the set of 
signal strength features comprises one or more of : trend data 
extracted from the trend data series of the decomposed 
signal strength data ; residual data extracted from the residual 
data series of the decomposed signal strength data ; or a 
standard deviation of received signal strength indicators 
( RSSIs ) extracted from the signal strength data ; and the set 
of signal phase features comprises one or more of : a slope 
of a linear regression of the frequency - phase curve ; a 
correlation coefficient of a least - squares regression of the 
frequency - phase curve ; a descending trend corresponding to 
a phase variation of the plurality of signal phases ; a dynamic 
range of the plurality of signal phases ; or a number of zero 
crossings of the frequency - phase curve . 
[ 0191 ] One or more embodiments may include a system , 
comprising : a radio frequency identification ( RFID ) reader 
to communicate with a plurality of radio frequency identi 
fication ( RFID ) tags , and processing circuitry to : receive , 
from the RFID reader , wireless signal data corresponding to 
a radio frequency identification ( RFID ) tag of the plurality 
of RFID tags , wherein the wireless signal data comprises 
signal strength data and signal phase data , wherein the signal 
strength data and the signal phase data correspond to a 
plurality of wireless signals transmitted by the RFID tag and 
received by the RFID reader ; generate decomposed signal 
strength data based on a seasonal decomposition of the 
signal strength data , wherein the decomposed signal strength 
data comprises a seasonal data series , a trend data series , and 
a residual data series ; generate a frequency - phase curve 
based on the signal phase data , wherein the frequency - phase 
curve indicates a plurality of signal phases detected across a 
plurality of transmission frequencies of the plurality of 
wireless signals ; extract a set of signal strength features 
based on the decomposed signal strength data ; extract a set 
of signal phase features based on the frequency - phase curve ; 
and detect a motion state of the RFID tag using a machine 
learning classifier , wherein the machine learning classifier is 
trained to detect the motion state of the RFID tag based at 
least on the set of signal strength features and the set of 
signal phase features . 
[ 0192 ] In one example embodiment of a system : the RFID 
tag corresponds to a physical asset ; and the processing 
circuitry is further to detect behavior associated with the 
physical asset based on the motion state of the RFID tag . 
[ 0193 ] In one example embodiment of a system : the set of 
signal strength features comprises one or more of : trend data 
extracted from the trend data series of the decomposed 
signal strength data ; residual data extracted from the residual 
data series of the decomposed signal strength data ; or a 
standard deviation of received signal strength indicators 
( RSSIs ) extracted from the signal strength data ; and the set 
of signal phase features comprises one or more of : a slope 
of a linear regression of the frequency - phase curve ; a 
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a a time of occurrence of the motion state ; 
whether the RFID tag is stationary or moving ; and 
a movement energy intensity of the RFID tag . 

31. The device of claim 29 , wherein the set of signal 
strength features comprises : 
one or more trend features extracted from the trend data 

series in the decomposed signal strength data ; 
one or more residual features extracted from the residual 

data series in the decomposed signal strength data ; and 
a standard deviation of received signal strength indicators 

( RSSIs ) extracted from the signal strength measure 
ments . 

32. The device of claim 29 , wherein the set of signal phase 
features comprises one or more of : 

a slope of a linear regression of the frequency - phase 
curve ; 

a correlation coefficient of a least - squares regression of 
the frequency - phase curve ; 

a descending trend corresponding to a phase variation of 
the plurality of signal phases ; 

a dynamic range of the plurality of signal phases ; or 
a number of zero crossings of the frequency - phase curve . 
33. The device of claim 26 , wherein the processing 

circuitry is further to : 
detect , based on the motion of the RFID tag , behavior 

associated with a physical asset corresponding to the 
RFID tag . 

correlation coefficient of a least - squares regression of the 
frequency - phase curve ; a descending trend corresponding to 
a phase variation of the plurality of signal phases ; a dynamic 
range of the plurality of signal phases ; or a number of zero 
crossings of the frequency - phase curve . 

1-25 . ( canceled ) 
26. A device to perform motion detection for radio fre 

quency identification ( RFID ) tags , comprising : 
interface circuitry ; and 
processing circuitry to : 

receive , via the interface circuitry , wireless signal mea 
surements associated with an RFID tag , wherein the 
wireless signal measurements comprise signal 
strength measurements and signal phase measure 
ments obtained from wireless signals transmitted by 
the RFID tag over a time window ; 

extract decomposed signal strength data from the signal 
strength measurements , wherein the decomposed 
signal strength data comprises one or more decom 
posed time series datasets ; 

extract frequency - phase data from the signal phase 
measurements , wherein the frequency - phase data 
indicates a plurality of signal phases detected across 
a plurality of transmission frequencies of the wire 
less signals transmitted by the RFID tag ; and 

perform motion detection for the RFID tag , wherein the 
motion detection is to detect motion of the RFID tag 
based on the decomposed signal strength data and 
the frequency - phase data . 

27. The device of claim 26 , wherein the processing 
circuitry to extract the decomposed signal strength data from 
the signal strength measurements is further to : 

perform a seasonal decomposition on the signal strength 
measurements , wherein the seasonal decomposition is 
to decompose the signal strength measurements into the 
one or more decomposed time series datasets , wherein 
the one or more decomposed time series datasets com 
prise one or more of : 
a seasonal data series ; 
a trend data series ; or 
a residual data series . 

28. The device of claim 27 , wherein the frequency - phase 
data represents a frequency - phase curve , wherein the fre 
quency - phase curve indicates the plurality of signal phases 
detected across the plurality of transmission frequencies of 
the wireless signals transmitted by the RFID tag . 

29. The device of claim 28 , wherein the processing 
circuitry to perform motion detection for the RFID tag is 
further to : 

extract a set of signal strength features based on the 
decomposed signal strength data ; 

extract a set of signal phase features based on the fre 
quency - phase curve ; and 

perform motion detection for the RFID tag using a 
machine learning classifier , wherein the machine learn 
ing classifier is trained to perform motion detection 
based on at least the set of signal strength features and 
the set of signal phase features . 

30. The device of claim 29 , wherein the processing 
circuitry to perform motion detection for the RFID tag using 
the machine learning classifier is further to : 

generate a motion state of the RFID tag , wherein the 
motion state indicates : 
an identity of the RFID tag ; 

34. At least one non - transitory machine accessible storage 
medium having instructions stored thereon , wherein the 
instructions , when executed on processing circuitry , cause 
the processing circuitry to : 

receive wireless signal measurements associated with a 
radio frequency identification ( RFID ) tag , wherein the 
wireless signal measurements comprise signal strength 
measurements and signal phase measurements obtained 
from wireless signals transmitted by the RFID tag over 
a time window ; 

extract decomposed signal strength data from the signal 
strength measurements , wherein the decomposed sig 
nal strength data comprises one or more decomposed 
time series datasets ; 

extract frequency - phase data from the signal phase mea 
surements , wherein the frequency - phase data indicates 
a plurality of signal phases detected across a plurality 
of transmission frequencies of the wireless signals 
transmitted by the RFID tag ; and 

perform motion detection for the RFID tag , wherein the 
motion detection is to detect motion of the RFID tag 
based on the decomposed signal strength data and the 
frequency - phase data . 

35. The storage medium of claim 34 , wherein the one or 
more decomposed time series datasets comprises : 

one or more periodic data series ; and 
one or more non - periodic data series . 
36. The storage medium of claim 34 , wherein : 
the one or more decomposed time series datasets com 

prises one or more of : 
a seasonal data series ; 
a trend data series ; or 
a residual data series ; and 

the frequency - phase data represents a frequency - phase 
curve , wherein the frequency - phase curve indicates the 
plurality of signal phases detected across the plurality 
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of transmission frequencies of the wireless signals 
transmitted by the RFID tag . 

37. The storage medium of claim 36 , wherein the instruc 
tions that cause the processing circuitry to perform motion 
detection for the RFID tag further cause the processing 
circuitry to : 

extract a set of signal strength features based on the 
decomposed signal strength data ; 

extract a set of signal phase features based on the fre 
quency - phase curve ; and 

perform motion detection for the RFID tag using a 
machine learning classifier , wherein the machine learn 
ing classifier is trained to perform motion detection 
based on at least the set of signal strength features and 
the set of signal phase features . 

38. The storage medium of claim 37 , wherein the instruc 
tions that cause the processing circuitry to perform motion 
detection for the RFID tag using the machine learning 
classifier further cause the processing circuitry to : 

generate a motion state of the RFID tag , wherein the 
motion state indicates : 
an identity of the RFID tag ; 
a time of occurrence of the motion state ; 
whether the RFID tag is stationary or moving ; and 
a movement energy intensity of the RFID tag . 

39. The storage medium of claim 37 , wherein the set of 
signal strength features comprises : 

one or more trend features extracted from the trend data 
series in the decomposed signal strength data ; 

one or more residual features extracted from the residual 
data series in the decomposed signal strength data ; and 

a standard deviation of received signal strength indicators 
( RSSIS ) extracted from the signal strength measure 
ments . 

40. The storage medium of claim 37 , wherein the set of 
signal phase features comprises one or more of : 

a slope of a linear regression of the frequency - phase 
curve ; 

a correlation coefficient of a least - squares regression of 
the frequency - phase curve ; 

a descending trend corresponding to a phase variation of 
the plurality of signal phases ; 

a dynamic range of the plurality of signal phases ; or 
a number of zero crossings of the frequency - phase curve . 
41. The storage medium of claim 37 , wherein the machine 

learning classifier comprises a voting classifier , wherein the 
voting classifier is to perform motion detection for the RFID 
tag based on motion detection predictions from a plurality of 
machine learning models . 

42. The storage medium of claim 37 , wherein the machine 
learning classifier comprises a single model classifier , 
wherein the single model classifier comprises : 

a support - vector machine ( SVM ) model ; 
a random forest model ; or 
a logistic regression model . 
43. The storage medium of claim 34 , wherein the instruc 

tions further cause the processing circuitry to : 
detect , based on the motion of the RFID tag , behavior 

associated with a physical asset corresponding to the 

45. A method of performing motion detection for radio 
frequency identification ( RFID ) tags , comprising : 

receiving wireless signal measurements associated with 
an RFID tag , wherein the wireless signal measurements 
comprise signal strength measurements and signal 
phase measurements obtained from wireless signals 
transmitted by the RFID tag over a time window ; 

extracting decomposed signal strength data from the 
signal strength measurements , wherein the decom 
posed signal strength data comprises one or more 
decomposed time series datasets ; 

extracting frequency - phase data from the signal phase 
measurements , wherein the frequency - phase data indi 
cates a plurality of signal phases detected across a 
plurality of transmission frequencies of the wireless 
signals transmitted by the RFID tag ; and 

performing motion detection for the RFID tag , wherein 
the motion detection is to detect motion of the RFID tag 
based on the decomposed signal strength data and the 
frequency - phase data . 

46. The method of claim 45 , wherein performing motion 
detection for the RFID tag comprises : 

extracting a set of signal strength features based on the 
decomposed signal strength data ; 

extracting a set of signal phase features based on the 
frequency - phase data ; and 

performing motion detection for the RFID tag using a 
machine learning classifier , wherein the machine learn 
ing classifier is trained to perform motion detection 
based on at least the set of signal strength features and 
the set of signal phase features . 

47. The method of claim 45 , further comprising : 
detecting , based on the motion of the RFID tag , behavior 

associated with a physical asset corresponding to the 
RFID tag . 

48. The method of claim 47 , wherein : 
the physical asset comprises a retail product ; and 
the behavior associated with the physical asset comprises 

a human interaction with the retail product . 
49. A system , comprising : 
a radio frequency identification ( RFID ) reader to com 

municate with a plurality of RFID tags ; and 
processing circuitry to : 

receive , from the RFID reader , wireless signal mea 
surements associated with an RFID tag of the plu 
rality of RFID tags , wherein the wireless signal 
measurements comprise signal strength measure 
ments and signal phase measurements obtained from 
wireless signals transmitted by the RFID tag over a 
time window ; 

extract decomposed signal strength data from the signal 
strength measurements , wherein the decomposed 
signal strength data comprises one or more decom 
posed time series datasets ; 

extract frequency - phase data from the signal phase 
measurements , wherein the frequency - phase data 
indicates a plurality of signal phases detected across 
a plurality of transmission frequencies of the wire 
less signals transmitted by the RFID tag ; and 

perform motion detection for the RFID tag , wherein the 
motion detection is to detect motion of the RFID tag 
based on the decomposed signal strength data and 
the frequency - phase data . 

RFID tag . 

a 
44. The storage medium of claim 43 , wherein : 
the physical asset comprises a retail product ; and 
the behavior associated with the physical asset comprises 

a human interaction with the retail product . 
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50. The system of claim 49 , wherein : 
the RFID tag corresponds to a physical asset ; and 
the processing circuitry is further to detect behavior 

associated with the physical asset based on the motion 
of the RFID tag . 

* 


